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Abstract 

Background A reduction in right ventricular (RV) function during recovery from prolonged endurance exercise 
has been documented alongside RV dilatation. A relative elevation in pulmonary artery pressure and therefore RV 
afterload during exercise has been implicated in this post-exercise dysfunction but has not yet been demonstrated. 
The current study aimed to assess RV structure and function and pulmonary artery pressure before, during and after 
a 6-h cycling exercise bout.

Methods Eight ultra-endurance athletes were recruited for this study. Participants were assessed prior to exercise 
supine and seated, during exercise at 2, 4 and 6 h whilst cycling seated at 75% maximum heart rate, and post-exercise 
in the supine position. Standard 2D, Doppler and speckle tracking echocardiography were used to determine indices 
of RV size, systolic and diastolic function.

Results Heart rate and RV functional parameters increased from baseline during exercise, however RV structural 
parameters and indices of RV systolic and diastolic function were unchanged between in-exercise assessment points. 
Neither pulmonary artery pressures (26 ± 9 mmHg vs 17 ± 10 mmHg, P > 0.05) nor RV wall stress (7.1 ± 3.0 vs 6.2 ± 2.4, 
P > 0.05) were significantly elevated during exercise. Despite this, post-exercise measurements revealed RV dilation 
(increased RVD1 and 3), and reduced RV global strain (− 21.2 ± 3.5 vs − 23.8 ± 2.3, P = 0.0168) and diastolic tissue veloc-
ity (13.8 ± 2.5 vs 17.1 ± 3.4, P = 0.019) vs pre-exercise values.

Conclusion A 6 h cycling exercise bout at 75% maximum heart rate did not alter RV structure, systolic or diastolic 
function assessments during exercise. Pulmonary artery pressures are not elevated beyond normal limits and there-
fore RV afterload is unchanged throughout exercise. Despite this, there is some evidence of RV dilation and altered 
function in post-exercise measurements.
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Background
Exercise induced changes in cardiac structure and func-
tion during recovery from prolonged endurance exercise 
have been well documented and are commonly referred 
to as exercise induced cardiac fatigue. Recent research 
has focused on the right ventricle (RV) and a reduction in 
both systolic and diastolic RV function has been reported 
from prolonged endurance exercise of several modalities 
[5, 21, 28, 31]. Dilatation of the RV is also evident follow-
ing greater duration endurance exercise suggestive of a 
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possible overload to the right heart [15, 25, 30]. Endur-
ance cycling, the modality used in the current study, is 
among those associated with reduced RV function, as 
assessed by echocardiographic [32, 33] and cardiac MRI 
techniques [5].

The majority of studies investigating cardiac fatigue 
have focused on comparisons between pre-race and 
recovery measures, with a void in the literature focusing 
on the in-exercise response of the RV. There are a limited 
number of studies assessing cardiac function during exer-
cise. An increase in RV systolic tissue velocity has been 
demonstrated during submaximal cycling exercise [11, 
35] with results indicating a physiological linear response 
between increasing exercise intensity and increasing con-
tractility. However, there are no data available to charac-
terise the diastolic functional response of the RV during 
exercise. Using more novel techniques, Goebel et al. [11], 
Tan et  al. [35] and La Gerche et  al. [14] applied strain 
imaging to the RV during submaximal cycling, stress 
echo and progressive maximal cycling respectively and 
reported an increase in RV strain. Banks et al. [2] report a 
reduction in RV strain and strain rates at 150 min of run-
ning. However, participants in this study were transferred 
from the treadmill to echo bed and stopped exercising 
for the duration of the assessment. Heart rate drops sig-
nificantly on exercise cessation and the echocardiograms 
were obtained with subjects in a supine as opposed to 
upright position therefore impacting on load and not 
giving a true reflection of in-exercise RV function. The 
equivocal results and short duration exercise stimuli 
employed make firm conclusions about the in-exercise 
RV response challenging.

Several possible mechanisms have been suggested to 
explain cardiac fatigue in the RV. These include beta-
adrenergic receptor down-regulation [2] and subsequent 
reduction in contractility; inflammation or biomarker 
release [18]; or an elevated RV afterload secondary to a 
disproportionally elevated pulmonary compared to sys-
temic pressure [17]. The pulmonary circulation has a 
limited capacity for vasodilation and therefore pulmo-
nary artery pressures (PAP) during exercise are relatively 
higher when compared to the systemic circulation and 
can reach values indicative of pulmonary hypertension 
during prolonged endurance exercise [13]. La Gerche 
et  al. have quantified this disproportionate RV exercise 
stroke work in a semi-supine progressive cycling exercise 
fitness test and reported significantly elevated PAP up 
to 61 mmHg during exercise. The use of cardiac MRI to 
derive RV end systolic volume and echocardiography to 
estimate PAP does not afford simultaneous assessment 
of the components that RV wall stress is calculated from 
and although the authors attempt to correct for the two 
techniques involved in the measurement, there is a large 

potential for error. The concurrent assessment of RV 
structure and function alongside pulmonary artery pres-
sures using echocardiography may aid the understand-
ing of temporal exercise induced changes in a prolonged 
upright exercise bout. The aim of this study is therefore 
to build on previous research and assess RV structure 
and function and pulmonary artery pressures before, at 
2-h intervals during, and following a 6-h cycling exercise 
bout. We hypothesised that PAP would be elevated dur-
ing prolonged strenuous cycling exercise and that RV 
dysfunction and structural enlargement would be present 
post-exercise.

Methods
Sample population
Eight well trained male ultra-endurance athletes (Body 
mass 77.8 ± 11 kg, height 179 ± 6 cm, BP 136/88 mmHg, 
age 40 ± 7  years,  VO2 max 51.9 ± 10  ml  kg   min−1) gave 
written informed consent to participate in this study. 
Participants self-reported: no known cardiovascular dis-
ease, no prescribed medications and no comorbidities or 
family history of cardiovascular disease. Ethical approval 
was granted by the University Ethics Committee.

Protocols
Participants underwent a maximal oxygen uptake test 
(Oxycon, Care Fusion, Hoechberg, Germany and SRM 
bike, Jülich, Germany) at 30 W increments every 3 min 
to determine their maximum heart rate on a separate day 
to the 6-h cycling session. Participants were requested to 
avoid vigorous training, alcohol, and caffeine for a mini-
mum of 24 h prior to the assessment. On the day of the 
cycling session, systolic and diastolic blood pressure was 
assessed prior to and immediately after exercise using 
standard auscultation (Dinamap pro, GE Healthcare, 
Horten, Norway). Echocardiography assessments were 
done prior to the exercise session in both supine and 
seated positions; at 2-, 4- and 6-h intervals during the 
exercise bout (seated cycling); and in the supine posi-
tion immediately post exercise. All images were acquired 
using a commercially available ultrasound system (Vivid 
Q, GE Medical, Horten, Norway) with a 1.5–4  MHz 
phased array transducer. In-exercise images were 
obtained by a single experienced sonographer (DLO) 
with the participant on their own road cycling bike fixed 
to a turbo trainer device cycling at 75% maximum heart 
rate. Images were recorded to DVD in raw DICOM for-
mat and data were analysed offline by a single experience 
sonographer (RNL) using commercially available soft-
ware (EchoPac version 7, GE Medical, Horten, Norway). 
A minimum of three cardiac cycles were averaged for all 
peak indices.
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Conventional 2D, Doppler and tissue Doppler 
echocardiography
The RV was assessed in accordance with British Society 
of Echocardiography guidelines [38] providing struc-
tural indices at the outflow tract  (RVOTplax,  RVOT1, and 
 RVOT2) and at the inflow  (RVD1,  RVD2,  RVD3). RV dias-
tolic area (RVAd) and systolic area (RVAs) were meas-
ured, and the fractional area change calculated (RVFAC). 
A pulsed wave tissue doppler imaging (TDI) sample posi-
tioned at the tricuspid annulus allowed the assessment of 
RV S’, E’ and A’ myocardial velocities. Right ventricular 
systolic pressure (RVSp) was derived from the tricuspid 
regurgitant jet (TR velocity) using continuous wave Dop-
pler. The regurgitant signal was improved for resting and 
exercise measurements using agitated saline adminis-
tered via a three way stop cock cannula inserted into the 
antecubital vein as previously described [1]. This tech-
nique has been shown to improve the accuracy of both 
resting and exercising assessments of pulmonary artery 
pressures [20] and agitated saline was therefore admin-
istered to our participants immediately prior to echocar-
diographic assessment at rest, at 2, 4 and 6  h intervals 
into the cycling session and during post-exercise assess-
ment. Pulmonary artery systolic pressure (PASP) was 
calculated as (PASP (mmHg) =  RVSp + 5 mmHg). For RV 
end-systolic wall stress, Laplace’s law was used to calcu-
late according to the formula Pr/2 h where P (pressure) 
was quantified as PASP, r (radius) was calculated using 
the formula r = 0.620(RVSa)

1

3 , assuming spherical geom-
etry as previously described [24] and h was quantified as 
RV wall thickness.

2D myocardial speckle tracking
Based on a previous study by our group suggesting lim-
ited feasibility, comparability and reliability of myocardial 
speckle tracking to derive RV longitudinal strain above 
50% maximum heart rate, we have only assessed RV 
strain at rest pre and post-exercise [23]. A modified api-
cal 4 chamber image with lateral transducer movement 
was acquired for assessment of the RV strain. For all 
images the system was optimised as previously described 
[30]. Offline analysis allowed the assessment of peak 
global longitudinal RV strain (calculated as an average of 
6 myocardial segments from base to apex of the RV free 
wall and septum) and RV free wall strain calculated as 
an average of the 3 myocardial basal, mid and apical seg-
ments of the RV free wall.

Statistics
Echocardiographic data were analysed for normality of 
distribution using a Shapiro–Wilk test. Seated baseline 
and peak data at 2, 4 and 6 h of exercise were compared 

using a one-way repeated measures ANOVA. Pre- to 
post-exercise supine data were compared using a paired 
samples T-test. All statistical tests were performed using 
commercially available software (IBM SPSS version 22) 
and statistical significance was set as P < 0.05.

Results
Exercise responses
Heart rate was significantly higher during exercise at 2, 
4 and 6  h compared to baseline (P = 0.04, 0.04 and 0.03 
respectively, Table  1). There was a significant increase 
(P = 0.003) in TAPSE from baseline to 4 h and RV S’ and 
RV A’ were also significantly elevated (P = 0.001, 0.015 
and 0.006 and > 0.001 respectively, Table 1) from baseline 
at 2, 4 and 6 h into exercise. There were no significant dif-
ferences in RVFAC, TR velocity, PASP or RV wall stress 
from baseline to in-exercise measures (P > 0.05, Table 1). 
There were also no significant differences in RV struc-
tural parameters RVOTplax, RVOT1, RVOT2, RVD1, 
RVD2, RVD3, RVAd and RVAs from baseline to in-exer-
cise assessment points (P > 0.05, Table 1).

Pre‑ and post‑exercise comparison
Body mass (77.8 ± 11 and 78 ± 11.3 kg) and diastolic blood 
pressure (78 ± 8 and 70 ± 5  mmHg) were unchanged 
pre- to post-exercise (P > 0.05). Heart rate (HR) was sig-
nificantly increased post-exercise (75 ± 11 beats   min−1) 

Table 1 Right ventricular structural and functional indices 
during exercise

One-way repeated measures ANOVA, statistical significance indicated as 
ɣ = baseline to 2 h, * = baseline to 4 h, ʘ = baseline to 6 h. Data are mean ± SD, 
N = 8, except for  RVOTplax where n = 7. Baseline data were obtained with 
participants sat upright on the bike

Variable Baseline 2‑h 4‑h 6‑h

Heart rate (beats.min−1) 60 ± 10 131 ±  12ɣ 134 ± 16* 146 ±  27ʘ

RVOTplax (mm) 30 ± 3 31 ± 2 32 ± 3 33 ± 3

RVOT1 (mm) 32 ± 4 33 ± 6 34 ± 4 33 ± 5

RVOT2 (mm) 22 ± 3 22 ± 3 24 ± 2 23 ± 2

RVD1 (mm) 46 ± 5 47 ± 3 49 ± 5 47 ± 5

RVD2 (mm) 28 ± 5 28 ± 4 29 ± 3 30 ± 4

RVD3 (mm) 85 ± 10 89 ± 6 90 ± 4 89 ± 4

RVAd  (cm2) 26.4 ± 4.7 27.0 ± 2.7 28.5 ± 3.8 27.9 ± 3.1

RVAs  (cm2) 12.9 ± 1.7 13.3 ± 2.5 13.2 ± 1.6 13.8 ± 1.8

RVFAC (%) 50.6 ± 6.0 50.9 ± 5.4 53.5 ± 6.2 50.5 ± 6.2

TAPSE (mm) 28 ± 3 32 ± 2 35 ± 4* 32 ± 3

RV S’ (cm/s) 17 ± 3 34 ±  6ɣ 31 ± 7* 32 ±  5ʘ

RV E’ (cm/s) 17 ± 41 20 ± 4 20 ± 6 20 ± 9

RV A’ (cm/s) 13 ± 3 29 ±  4ɣ 34 ± 3* 34 ±  2ʘ

PASP (mmHg) 17 ± 10 20 ± 9 21 ± 9 26 ± 9

TR velocity (m/s) 1.9 ± 0.5 2.1 ± 0.2 2.1 ± 0.6 2.4 ± 0.2

RV wall stress (kdynes/cm2) 6.2 ± 2.4 5.8 ± 3.4 5.5 ± 2.2 7.1 ± 3.0
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compared to pre-exercise (55 ± 10 beats   min−1, 
P = 0.001) and systolic blood pressure was signifi-
cantly reduced (P = 0.04) pre- to post-exercise (136 ± 13 
to 123 ± 10  mmHg). Structural parameters  RVOTplax, 
RVOT 1 and 2, RVD2, RVAd, and RVAs were not signifi-
cantly different pre- to post-exercise (P > 0.05, Table  2). 
In contrast, RVD1 and RVD3 were significantly larger 
post-exercise versus baseline (RVD1 50.0 ± 2.5  mm vs 
46.4 ± 4.7, P = 0.02; RVD3 88.4 ± 4.7 vs 84.8 ± 5.4  mm, 
P = 0.02; Fig.  1A, B). With respect to functional param-
eters, TAPSE, S’, A’, TR velocity, PASP, RV wall stress 
and RV free wall strain were not significantly different 
pre- to post-exercise (P > 0.05, Table  2). However, RV 
global strain (−  21.2 ± 3.5 vs −  23.8 ± 2.3, P = 0.02) and 
E’ (13.8 ± 2.5 vs 17.1 ± 3.4, P = 0.02) were significantly 
reduced post-exercise versus baseline (Fig. 1C, D).

Discussion
This study investigated the factors contributing to 
reduced RV function after endurance exercise, using 
echocardiographic assessment of RV function in athletes 
before, during, and after a 6-h cycling bout. Contrary 
to our hypothesis that increased PAP and RV afterload 
would occur during exercise and precede a reduction in 
RV function, we measured no PAP or afterload changes 
during exercise, despite evidence of RV dilation and 
reduced systolic and diastolic function post-exercise.

RV dilation and dysfunction post‑exercise
A dilation of the RV and reduction in systolic and dias-
tolic function after ultra-endurance exercise has been 

reported by several groups using a range of echocar-
diographic techniques and indices [8, 15, 16, 26, 30]. 
Increased RV size, reduced RV lateral wall myocardial 
annular velocities, and lower RV strain suggest reduc-
tion in myocardial relaxation and contraction post-exer-
cise. These changes are generally transient, with most 
parameters returning to baseline levels within days [15, 
16]. There is some evidence that RV strain rate remains 
reduced 6–11 days after the end of the exercise stimulus 
[15], although the time to recovery remains unclear.

The commonly accepted potential mechanism respon-
sible for these RV changes centers on an elevated PASP 
during exercise resulting in a disproportionate afterload 
for the RV during exercise [17, 30]. Increased PAP in 
endurance exercise has been demonstrated by both echo-
cardiographic [28] and direct right heart catheterisation 
[4] methods. Indeed, two meta-analyses have supported 
the notion that PAP often exceeds 30  mmHg during 
exercise and is dependent, in part, on age and exercise 
intensity [9, 13]. Moreover, trained athletes have a greater 
PAP both at rest [7] and during exercise compared to 
untrained individuals [6, 9, 19, 36], likely secondary to 
an increased RV stroke volume and inability of the pul-
monary vasculature to vasodilate to the same degree as 
the systemic vasculature. Reduced RV function with a 

Table 2 Right Ventricular Structural and Functional Indices pre- 
and post-exercise

Paired T-test, mean ± SD. N = 8, except for  RVOTplax and RV free wall strain where 
n = 7. Pre-exercise data were obtained in the supine position

Variable Pre‑exercise Post‑exercise P value

RVOTplax (mm) 35 ± 3 35 ± 5 0.57

RVOT1 (mm) 36 ± 6 36 ± 6 0.44

RVOT2 (mm) 26 ± 2 27 ± 2 0.48

RVD2 (mm) 33 ± 3 33 ± 3 0.64

RVDa  (cm2) 28.0 ± 3.6 31.4 ± 4.5 0.11

RVSa  (cm2) 14.6 ± 2.6 15.4 ± 2.1 0.23

RVFAC (%) 48 ± 5 51 ± 5 0.26

TAPSE (mm) 27 ± 5 28 ± 5 0.57

RV S’ (cm/s) 16 ± 2 17 ± 4 0.81

RV A’ (cm/s) 16 ± 3 16 ± 3 0.94

PASP (mmHg) 22 ± 7 20 ± 3 0.26

TR velocity (m/s) 2.2 ± 0.8 2.1 ± 0.3 0.45

RV Wall Stress (kdynes/cm2) 6.4 ± 2.7 5.8 ± 1.8 0.33

RV free wall strain (%) − 28.9 ± 3.2 − 28.2 ± 3.9 0.60
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Fig. 1 Right ventricular dimensions (A, B), early diastolic tissue 
velocity (C), and global strain (D) pre- and post-exercise. Data are 
mean ± SD, paired-T test. N = 8 for A–C and N = 7 for D
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concurrent increase in PASP was reported by Neilan 
et al. but not by Buchan et al., although this discrepancy 
could be attributed to the much shorter exercise stimu-
lus duration used in the latter study. Others have previ-
ously shown a decline in RV function with a reduction 
in PASP [15], whilst we previously found no change in 
PASP [22]. This variability could result from the meas-
urements being taken after the exercise stimulus had 
finished, with the participant supine, and from the vari-
able relative exercise intensity that participants exercised 
at. Thus, we expected that the current data would dem-
onstrate detectable increases in PASP and RV afterload 
during exercise. Interestingly, although a non-significant 
50% increase in PASP was evident 6-h into exercise, RV 
wall stress (as a surrogate of afterload) was not elevated 
at 2-, 4- or 6-h into the 6-h exercise bout. Despite this, 
a post-exercise dilation of the RV alongside a reduction 
in both systolic and diastolic function was evident. Thus, 
post-exercise RV dysfunction occurred in the setting of 
detectable increases in PASP but not RV afterload dur-
ing exercise, raising the possibility that elevated PAP may 
partially explain RV dysfunction after 6-h of prolonged 
cycling. Alternative mechanisms may therefore con-
tribute to some degree of RV dysfunction, or our non-
invasive surrogate of RV afterload may not be sensitive 
enough to detect elevations during exercise.

Downregulation and/or desensitisation of the cardiac 
beta-adrenergic receptors secondary to prolonged cat-
echolamine exposure has been proposed as a mechanism 
for exercise-induced cardiac fatigue in the right and left 
ventricle. In support of this, human studies have con-
sistently demonstrated that the cardiovascular response 
to a beta-adrenergic agonist (dobutamine) is reduced 
following a period of endurance exercise [2, 10, 12, 37], 
even under parasympathetic blockade [12]. As such, 
exercise-induced reductions in beta-adrenergic receptor 
activity may explain the decline in RV function follow-
ing endurance activities. However, it has also been con-
sistently demonstrated that endurance-exercise induced 
fatigue affects the right ventricle more (or sooner) than 
the left ventricle. In studies assessing the endurance-
exercise response of both ventricles, left ventricular func-
tion remains normal whilst right ventricular function 
has declined [5, 15, 30]. It is unclear why beta-adrener-
gic desensitisation/downregulation would affect the RV 
more than the LV, unless receptor expression or density 
differs between ventricles. Human right and left ventri-
cles (albeit donated by patients receiving a transplant fol-
lowing severe cardiomyopathy) were shown to contain a 
similar number of beta-adrenergic receptors and similar 
distribution of beta-1 and beta-2 subtypes [3]. As such, 
a beta-adrenergic mechanism may not underlie RV dys-
function following endurance exercise.

Alternatively, an overload-induced inflammatory 
response has also been suggested as a potential mecha-
nism for RV dysfunction. The increase in certain inflam-
matory markers (TNF-alpha, IL-12, IL-1 beta) after 
endurance exercise was correlated with indices of cardiac 
damage (troponin, B-type natriuretic peptide) and was 
greater in participants showing RV dysfunction versus 
those that did not [18]. However, these data do not dem-
onstrate causation, and further work is required to estab-
lish that endurance exercise does not simply drive both 
the inflammatory response and RV dysfunction via sepa-
rate mechanisms.

RV function during exercise
The lack of observable change in RV function during 
exercise in the current study is intriguing, given that we 
found reduced RV function in the post-exercise data and 
that others report altered RV function following exercise 
durations much shorter than 6-h [28, 29, 31]. Cycling was 
chosen as the exercise mode for the current study given 
its practical advantages for in-exercise echocardiogra-
phy, although it has significantly lower energy demands 
than running, rowing and triathlon [27] and this may 
explain the maintenance of RV structure and function 
during exercise. However, in-exercise indices of RV work 
(TAPSE, S’, A’) increased as expected and in line with pre-
vious reports in athletic populations [14, 23, 34]. Thus, 
the current cohort did not show a lower-than-expected 
response to endurance exercise. Pre-event training is 
another factor that could explain the lack of in-exercise 
alteration to RV function. The magnitude of RV dysfunc-
tion after endurance exercise is inversely related to the 
amount of pre-endurance-event training, such that RV 
dysfunction was greater in those completing less train-
ing [28]. As such, a high level of pre-study training rela-
tive to the study exercise stimulus could have prevented 
observable changes to RV function in the current cohort. 
However, the participants were completing a comparable 
level of training as in other athletic cohorts and none had 
competed in an endurance event for 2 weeks prior to the 
study. Alternatively, participant position during echo-
cardiographic assessment completed whilst cycling may 
impact measurement of RV function. Few studies have 
assessed RV structure, function, or PAP during exercise 
in an upright position and the effect of gravity on these 
parameters remains to be determined. Indeed, the previ-
ous studies estimating PAP during exercise have done so 
with participants in a supine or semi-supine position, and 
the effect of modifying body position when obtaining the 
tricuspid regurgitant signal during exercise is unknown. 
Assessment of PASP is more accurate using agitated 
saline and further work using this technique is required 
to establish the response of the pulmonary circulation 
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across a range of exercise modes, intensities, and dura-
tions to determine the relative afterload placed on the 
RV during exercise and the consequent acute structural 
and functional adaptations. Furthermore, studies using 
echocardiography to investigate RV exercise-induced 
cardiac fatigue have assessed participants prior to and on 
completion of exercise in a supine position and not con-
sidered the effect of body position on cardiac structure 
and function. Most exercise is undertaken in an upright 
position and to truly understand the effects of exercise on 
cardiac structure and function, it is pertinent for assess-
ments to be undertaken in the exercising body position 
to ensure that loading conditions are relevant for in-exer-
cise assessments.

Limitations
The small sample sized included in the current study 
likely influences statistical power and may, in part, 
explain the lack of statistical change evident in the in-
exercise data. The use of a semi-supine cycle ergometer 
may improve image quality and afford the use of speckle 
tracking to assess athletes during exercise and allow the 
assessment of RV and LV function using a superior tech-
nique and in multiple planes. Repeated assessments of 
PAP during exercise would confirm whether PAP is ele-
vated during exercise when assessed using non-invasive 
TR velocity-based measures. The use of 3D echo would 
improve structural assessment; however the frame rates 
are not sufficient to allow valid assessment of function 
especially during exercise at higher heart rates. Finally, 
the study did not assess LV function during or after exer-
cise, limiting the interpretation of LV-RV dynamics.

Conclusion
A 6-h cycling exercise bout at 75% maximum heart rate 
results in RV dilation and reduced RV function, how-
ever this was only evident post-exercise, with normal RV 
structure and function maintained during exercise. There 
was no evidence of increased PAP during exercise, sug-
gesting that the RV is not placed under a higher afterload 
during prolonged cycling. As such, endurance exercise-
induced RV dysfunction and dilation does not appear to 
be driven by an elevated RV afterload. Further work is 
needed to determine the mechanisms underlying RV dys-
function after endurance cycling.
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