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Abstract 

Background Machine learning (ML) algorithms can accurately estimate left ventricular ejection fraction (LVEF) 
from echocardiography, but their performance on cardiac point-of-care ultrasound (POCUS) is not well understood.

Objectives We evaluate the performance of an ML model for estimation of LVEF on cardiac POCUS compared 
with Level III echocardiographers’ interpretation and formal echo reported LVEF.

Methods Clinicians at a tertiary care heart failure clinic prospectively scanned 138 participants using hand-carried 
devices. Video data were analyzed offline by an ML model for LVEF. We compared the ML model’s performance 
with Level III echocardiographers’ interpretation and echo reported LVEF.

Results There were 138 participants scanned, yielding 1257 videos. The ML model generated LVEF predictions on 341 
videos. We observed a good intraclass correlation (ICC) between the ML model’s predictions and the reference stand-
ards (ICC = 0.77–0.84). When comparing LVEF estimates for randomized single POCUS videos, the ICC between the ML 
model and Level III echocardiographers’ estimates was 0.772, and it was 0.778 for videos where quantitative LVEF 
was feasible. When the Level III echocardiographer reviewed all POCUS videos for a participant, the ICC improved 
to 0.794 and 0.843 when only accounting for studies that could be segmented. The ML model’s LVEF estimates 
also correlated well with LVEF derived from formal echocardiogram reports (ICC = 0.798).

Conclusion Our results suggest that clinician-driven cardiac POCUS produces ML model LVEF estimates that corre-
late well with expert interpretation and echo reported LVEF.
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Introduction
Heart failure (HF) is a serious and increasingly preva-
lent condition associated with significant morbidity 
and mortality worldwide. The diagnosis and manage-
ment of heart failure require the reliable and recurrent 
evaluation of left ventricular ejection fraction (LVEF) 
as a representation of LV systolic function, commonly 
assessed with cardiac ultrasound, also known as echo. 
An echo is usually performed in the laboratory set-
ting on large full-functionality machines by profes-
sional sonographers and often involves the acquisition 
of up to 150 videos to comprehensively analyze cardiac 
structure and function. Given the resource-intensive 
nature of echo, inappropriately prolonged investigation 
wait times are becoming more common. Mechanisms 
to improve access to cardiac ultrasound are needed to 
support the existing healthcare infrastructure.

Machine learning algorithms (ML) have been shown 
to estimate the LVEF from echocardiography with a 
high degree of accuracy [1–7]. However, there are few 
studies that validate the performance of ML models for 
the prediction of LVEF on cardiac POCUS [8, 9]. Car-
diac POCUS imposes challenges additional to those of 
cart-based echocardiography, further complicating the 
quantification of cardiac indices such as LVEF. First, 
cardiac POCUS studies tend to produce images of often 
inferior quality compared to cart-based echocardiog-
raphy due to the limited image enhancement capabili-
ties of portable devices [10], patient instability [11], and 
variable scanner experience.

Our group has previously presented machine learning 
models for the automated estimation of LVEF in several 
works [2–4, 12, 13]. We have shown accuracy through 
testing on POCUS videos scanned by trained sonogra-
phers [14]. Validation of ML models on clinician driven 
POCUS can enable broader use of POCUS, improve 
access to cardiac ultrasound for LVEF evaluation and 
may reduce demand for echocardiography.

In this paper, we test our ML LVEF model on heart 
failure patients’ cardiac POCUS videos acquired by 
clinicians with varying scanning experience. We aim 
to demonstrate the feasibility and reliability of ML-
augmented LVEF estimation on POCUS and compare 
its performance to blinded level III echocardiographer 
interpretation and reported LVEF on echocardiogram.

Material and methods
Study design and setting
The study procedure and protocols were designed 
in accordance with the Declaration of Helsinki and 
received approval from the University of British 
Columbia institutional review board. Written informed 

consent for study participation was obtained from all 
subjects.

Subjects
The study recruited participants from the Heart Fail-
ure (HF) clinic at a large, academic referral hospital and 
included individuals with both reduced and preserved 
ejection fraction.

Imagers
The study included 7 physicians and 2 nurse practi-
tioners as clinician scanners, who received training in 
the operation of the hand-carried ultrasound device 
(Clarius Scanner PA HD, Clarius Mobile Health Corp; 
Burnaby, Canada). The physicians were heart failure 
specialists meeting the criteria of level II echocardiogra-
phers, though they did not interpret echocardiography 
as a part of their usual duties. A level II echocardiogra-
pher has acquired 24  weeks of dedicated training and 
is deemed independent in echo image acquisition and 
interpretation. The nurse practitioners had no baseline 
ultrasound experience and were individually trained for 
the acquisition of the parasternal long axis (PLAX), api-
cal 2 chamber (AP2), and apical 4 chamber (AP4) views 
on their first 10 participants. All clinician scanners had 
access to hardcopy and electronic resources for optimal 
acquisition of the target cardiac views.

Data acquisition protocol
Participants were recruited between February 2021 and 
June 2022 at the HF clinic, which specializes in the evalu-
ation and treatment of heart failure patients. Eligible par-
ticipants were 18 years of age or older and had undergone 
an echocardiogram within 3 months of the visit date or 
had a scheduled echocardiogram. Clinician scanners 
independently obtained the target views with a level III 
echocardiographer present to identify unexpected criti-
cal findings. The acquired clips were transferred to a 
regional imaging database for offline analysis by the ML 
model for view classification and LVEF estimation.

ML result analysis protocol
For this study, we established five reference standards for 
comparison which accounted for both the single video 
and participant level data (Fig. 1).

The level III echocardiographer evaluated LVEF at a 
single video and participant level; blinded to the clini-
cal data and ML model estimate of LVEF. A level III 
echocardiographer describes a cardiologist who has 
obtained the highest level of expertise in echocar-
diography through a dedicated fellowship entailing 
76  weeks of cumulative training. The original study 
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design called for same-day echocardiogram and HF 
clinic POCUS to allow for direct comparison of LVEF 
data. However, due to the COVID-19 pandemic, there 
was decoupling of the clinic visit and echocardiogram, 
resulting in delays in echocardiogram performance. 
To account for the difference in timing of the research 
POCUS and formal echocardiogram, we calculated 
derived LVEF based on the linear interpolation of val-
ues from the echo report before and after the POCUS.

Machine learning model architecture
The ML model used in this study was previously devel-
oped and validated using 2,920 apical echo cines from 
2,127 patients. The model is based on U-Net architec-
ture predicting LV segmentation mask and two landmark 
heatmaps, namely LV apex and mitral valve. The LV mask 
and the corresponding landmark points are used to esti-
mate LV volume following method of disk on AP4 and 
AP2 chamber clips. The model is applied to the echo cine 

Fig. 1 Summary of comparisons and raters. A The intraclass correlation coefficient (ICC) was calculated for the ML model estimated left ventricular 
ejection fraction (LVEF) of single videos as compared with the aforementioned five reference standards. The reference standards were established 
by a level III echocardiographer by 4 different methods and the derived LVEF using formal echocardiogram reports. B The ML model LVEF 
was calculated at the participant level by averaging the single video estimates for LVEF. The participant ML model LVEF was used for ICC calculation 
by comparing with 5 reference standards; 2 methods which required averaging of expert LVEF estimates across single videos
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frame by frame to obtain the predictions for the entire 
cardiac cycle. Model architecture and performance were 
previously described by Jafari et al [14].

Study outcomes and data collection
Clinicians obtained AP2, AP4, and PLAX views during 
POCUS, aiming to do so within 5 min. Other views could 
be obtained as needed. A level III echocardiographer was 
present to alert the clinician to time-sensitive findings. 
Structured data including age, height, weight, sex, heart 
rate, blood pressure, clinician scanner type, and cardio-
myopathy type were collected. Participant rhythm was 
obtained from ECG reports. The primary outcome was 
the intraclass correlation coefficient (ICC) between the 
ML model LVEF and reference standards at single video 
and participant levels. Subgroup analysis was performed 
based on clinical factors including BMI, rhythm, and 
scanner type.

Data processing and labelling
The anonymized video data was securely transferred to a 
research imaging repository after cardiac POCUS com-
pletion. A level III echocardiographer (CL) analyzed the 
blinded videos in two ways (Fig.  1). The first approach 
estimated LVEF per video file on a research platform, 
while the second approach produced an overall partici-
pant LVEF after viewing all videos using a the clinical 
application syngo Dynamics (version 20). The echocar-
diographer would give an LVEF estimate using AP4 and 
AP2 images visually and Simpson method of disks when 
feasible. The videos were processed for ML model analy-
sis by cropping with an in-house algorithm, downsizing 
to 128 × 128 pixels with 30 sampled frames, and rescaling 
pixel intensities. LVEF estimation required images that 
were of sufficient quality to enable LV segmentation by 
the ML model for 30 consecutive frames; videos that did 
not meet this criteria were excluded.

Statistical analysis
LVEF estimation was analyzed using ICCs for pairs of 
individual video LVEF estimates and average LVEF esti-
mates per participant, as described in Fig.  1. Subgroup 
analysis was performed based on sex, body mass index, 
rhythm, and scanner type. The analyses were conducted 
using SAS v9.4 (SAS Institute, Cary, North Carolina). 
ICC values below 0.5, between 0.5 and 0.75, between 0.75 
and 0.90, and above 0.90 represent poor, moderate, good, 
and excellent reliability, respectively [15].

Results
Acquired data sets
There was a total of 138 participants scanned for this 
study which yielded 1257 videos for analysis. Participant 

characteristics are summarized in Table  1. Tables  2, 3 
provides a synopsis of the POCUS video data for each 
rating method.

Safety
For one participant, the echocardiographer was required 
to facilitate in clarification of an LV structure that could 
represent a mass, thrombus, or prominent papillary mus-
cle. POCUS performed by the echocardiographer could 
not exclude a mass or thrombus therefore, the echocar-
diographer expedited a formal echocardiogram which 
confirmed that the structure was a prominent papillary 
muscle.

Relationship between ML model and reference rater LVEF 
estimation
Out of a total of 1257 cardiac POCUS videos, 341 were 
of sufficient quality for ML model estimation of LVEF 
whereas the level III echocardiographer was able to 
assign an LVEF to 851 videos by visual assessment and 
245 by segmentation. On a randomized single video 
level, the ICC for ML model and level III echocardi-
ographer LVEF was 0.772 [0.501,1.000] for visual esti-
mates and 0.778 [0.578,1.000] when segmentation was 
feasible (Table 4). If comparing single videos (account-
ing for all videos for a participant), the ML model and 
level III visual LVEF ICC was 0.794 [0.173, 1.000] and 
improved to 0.843 [0.310, 1.000] when segmentation 
was possible (Table 4). The ML model LVEF also agrees 

Table 1 Participant demographic data

* 1 individual identified as a transgender man, analyzed as female sex for this 
study

Characteristics Proportion

Male 118*/138 (85.5%)

Scanned by nurse 91/138 (65.9%)

Scanned by physician 47/138 (34.1%)

Rhythm atrial fibrillation or atrial 
flutter at the time of scan

54/138 (39.1%)

LVEF > 50% 27/138 (19.6%)

Type of cardiomyopathy
• NICMO
• ICMO
• Unknown

Type of cardiomyopathy
• 73/138 (52.9%)
• 53/138 (38.4%)
• 12/138 (8.7%)

Variable Mean ± SD

Age (y) 66.2 ± 14.3

Weight (kg) 81.4 ± 18.6

BMI (kg/m2) 27.0 ± 5.5

Heart rate at time of scan (BPM) 73.9 ± 16.6

Systolic BP (mmHg) 121.7 ± 19.8

Diastolic BP (mmHg) 68.7 ± 10.1
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with the derived LVEF from interpolation of reported 
LVEF on formal echocardiograms at 0.798 [0.143, 
1.000]. The ICC values presented above indicate a good 
level of inter-rater agreement between the ML model 
and several reference standards. Figure  2 provides a 
graphical representation of these relationships.

To analyze the ML model performance at a partici-
pant level, LVEF estimates were averaged over all videos 
acquired for a particular person. The ICC was only 0.344 

when the reference standard was mean level III echocar-
diographer LVEF on randomized single videos and 0.273 
on mean LVEF by segmentation. When accounting for all 
videos for a participant, level III visual LVEF and mean 
ML model LVEF had an ICC of 0.386 and 0.574 if seg-
mentation was possible. The ICC for mean ML model 
LVEF and derived LVEF from interpolation of reported 
LVEF on formal echocardiograms was 0.482.

Table 2 Single video imaging data split by type of rater

* All videos for a participant were included in this category if at least one video in the study was assigned an LVEF by visual assessment
# All videos for a participant were included in this category if at least one video in the study was assigned an LVEF by segmentation

Rater Number of videos 
assigned an LVEF

Number of videos of 
insufficient quality for LVEF 
estimation

Mean 
estimation of 
LVEF ± SD

ML model 341 916 0.39 ± 0.13

Level III expert visual LVEF on randomized single videos 851 406 0.41 ± 0.13

Level III expert segmentation LVEF on randomized single videos 245 1012 0.40 ± 0.14

Level III expert visual LVEF, accounting for all videos for a participant 1175* 82 0.40 ± 0.13

Level III expert segmentation LVEF, accounting for all videos for a participant 754# 503 0.41 ± 0.13

Derived LVEF from echo reports N/A N/A 0.39 ± 0.12

Table 3 Participant imaging data split by type of rater

Rater Number of studies 
assigned an LVEF

Number of studies of 
insufficient quality for LVEF 
estimation

Mean 
estimation of 
LVEF ± SD

ML model 91 47 0.39 ± 0.11

Level III expert visual LVEF on randomized single videos, averaged per patient 120 18 0.40 ± 0.13

Level III expert segmentation LVEF on randomized single videos, averaged 
per patient

67 71 0.40 ± 0.14

Level III expert visual LVEF, accounting for all videos for a participant 124 14 0.40 ± 0.13

Level III expert segmentation LVEF, accounting for all videos for a participant 72 66 0.40 ± 0.12

Derived LVEF from echo reports 138 0 0.39 ± 0.12

Table 4 Inter-rater agreement for single video data

Observation Rater 1 of LVEF Rater 2 of LVEF ICC (95% CI)

1 ML model Level III expert visual LVEF on randomized single videos 0.772 (0.501, 1.000)

2 ML model Level III expert segmentation LVEF on randomized single videos 0.778 (0.578, 1.000)

3 ML model Level III expert visual LVEF, accounting for all videos for a participant 0.794 (0.173, 1.000)

4 ML model Level III expert segmentation LVEF, accounting for all videos for a participant 0.843 (0.310, 1.000)

5 ML model Derived LVEF from echo reports 0.798 (0.143, 1.000)
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Secondary results
The impact of body mass index (BMI), atrial fibrillation 
(AF)/atrial flutter (AFL), sex, and scanner type (physician 
or nurse) on ML model performance was also examined. 
On the individual video level, the correlations between 
the ML model and reference standards was 0.813–0.909 
for BMI ≥ 30 and 0.709–0.802 for BMI < 30. Comparing 
the derived echocardiogram LVEF estimation to the ML 
model saw an ICC of 0.870 for BMI ≥ 30 and 0.741 for 
BMI < 30 (Table 5). The ICC between these BMI groups 
is relatively similar and represents good inter-rater reli-
ability between the ML model and reference standards.

We examined the impact of sex on ML model LVEF 
estimation and found ICC values of 0.693–0.796 
and 0.869–0.901 for males and females, respectively 
(Table  5). The ML model and derived echocardiogram 
LVEF had ICC values of 0.758 and 0.859 for males and 
females, respectively. The reference standards and ML 
model results show a good/excellent inter-rater reliabil-
ity for females and moderate/good inter-rater reliability 
for males. There was 1 transgendered man whose data 
would have been analyzed as female, however; the images 
acquired were of insufficient quality for ML model 
analysis.

We also performed analysis for AF/AFL and non-AF/
AFL rhythms (sinus, paced, other). On the single video 
level, the correlations between the ML model reference 
standards was 0.596–0.823 for AF/AFL and 0.809–
0.860 for non-AF/AFL rhythms (Table  5). Unlike the 
BMI result, there seems to be a greater degree of vari-
ability in the ICC based on rhythm and reference rater 
type. The best ML model performance by ICC was 
with level III segmentation LVEF when accounting for 
all videos for a participant; this yielded an ICC of 0.823 
for those in AF/AFL and 0.860 for those in non-AF/
AFL rhythms. The worst ML model performance by 

ICC was with level III segmentation LVEF on rand-
omized single videos; this yielded an ICC of only 0.596 
(moderate correlation) for those in AF/AFL and 0.829 
(good correlation) for those in non-AF/AFL rhythms. 
The ICC for derived echocardiogram LVEF estimation 
and ML model demonstrated an ICC of 0.673 for AF/
AFL and 0.841 for non-AF/AFL. These results sug-
gest that the AF/AFL rhythm reduces the accuracy of 
ML model predictions of LVEF compared to expert 
assessment.

Lastly, we compared the ML model performance 
based on scanner type; physician (level II echocardiog-
rapher) versus nurse (novice scanner). Unexpectedly, 
the ICC value for ML model LVEF for physician scans 
was only 0.550–0.649 (moderate correlation) compared 
with 0.800–0.884 (good correlation) for nurse scanned 
videos (Table 5). The ML model and derived echocardi-
ogram had ICC values of 0.657 and 0.840 for physician 
and nurse scans, respectively. These results indicate 
that when the POCUS was conducted by the physician 
compared to nurses, there was higher disagreement 
between the ML model’s and reference rater’s estimated 
LVEF. The overall study results are outline in the Fig. 3.

Discussion
Our study evaluated the performance of an ML model 
for the prediction of LVEF on cardiac POCUS videos 
obtained by clinicians and demonstrated: (i) the ML 
model conveys a good degree of correlation with expert-
estimated LVEF and echocardiogram reported LVEF and 
(ii) clinical factors may influence model performance. 
Although we demonstrated good correlation when 
images were of adequate quality, we acknowledge that 
most images were not of sufficient quality for analysis 
(ML model LV segmentation for 30 consecutive frames). 
This is likely a reflection of the data composition, with the 

Fig. 2 Linear regression plots comparing the ML model to the reference standards. The intraclass correlation coefficient (ICC) for ML model 
LVEF and level III echocardiographer LVEF was 0.772 [0.501,1.000] and 0.778 [0.578,1.000] for randomized single videos by visual estimate 
and segmentation, respectively. The ICC for single video ML model LVEF and level III echocardiographer LVEF was 0.794 [0.173, 1.000] for visual 
assessment and 0.843 [0.310, 1.000] by segmentation when the expert was able to review all clips for a participant. The ICC for ML model LVEF 
and derived reported LVEF was 0.798 [0.143, 1.000]
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Table 5 Inter-rater agreement for single video data, subgroup analyses

Effect of BMI on LVEF estimation. BMI ≥ 30 or BMI < 30

Observation Rater 1 of LVEF Rater 2 of LVEF ICC (95% CI) BMI ≥ 30 (n = 80) ICC (95% CI) BMI < 30 
(n = 260)

1 ML model Level III expert visual LVEF on randomized single 
videos

0.813 (0.247, 1.000) 0.749 (0.740, 1.000)

2 ML model Level III expert segmentation LVEF on randomized 
single videos

0.829 (0.165, 1.000) 0.709 (0.098, 1.000)

3 ML model Level III expert visual LVEF, accounting for all videos 
for a participant

0.822 (0.129, 0.999) 0.771 (0.551, 1.000)

4 ML model Level III expert segmentation LVEF, accounting for all 
videos for a participant

0.909 (0.481, 1.000) 0.802 (0.243, 1.000)

5 ML model Derived LVEF from echo reports 0.870 (0.610, 1.000) 0.741 (0.071, 1.000)

Effect of sex on LVEF estimation: male or female

Observation Rater 1 of LVEF Rater 2 of LVEF ICC (95% CI) male (n = 293) ICC (95% CI) female (n = 49)

1 ML model Level III expert visual LVEF on randomized single 
videos

0.693 (0.089, 1.000) 0.901 (0.520, 1.000)

2 ML model Level III expert segmentation LVEF on randomized 
single videos

0.705 (0.073, 1.000) 0.869 (0.293, 1.000)

3 ML model Level III expert visual LVEF, accounting for all videos 
for a participant

0.740 (0.067, 0.999) 0.877 (0.503, 1.000)

4 ML model Level III expert segmentation LVEF, accounting 
for all videos for a participant

0.796 (0.176, 1.000) 0.901 (0.477, 1.000)

5 ML model Derived LVEF from echo reports 0.758 (0.131, 1.000) 0.859 (0.279, 1.000)

Effect of atrial fibrillation (AF) or atrial flutter (AFL) on LVEF estimation

Observation Rater 1 of LVEF Rater 2 of LVEF ICC (95% CI) AF or AFL 
(n = 108)

ICC (95% CI) Non-AF or non-
AFL (n = 234)

1 ML Model Level III expert visual LVEF on randomized single 
videos

0.684 (-0.143, 1.000) 0.809 (0.346, 1.000)

2 ML Model Level III expert segmentation LVEF on randomized 
single videos

0.596 (-0.067, 0.999) 0.829 (0.135, 0.999)

3 ML Model Level III expert visual LVEF, accounting for all videos 
for a participant

0.708 (0.182, 1.000) 0.831 (0.210, 1.000)

4 ML model Level III expert segmentation LVEF, accounting 
for all videos for a participant

0.823 (0.350, 1.000) 0.860 (0.428, 1.000)

5 ML Model Derived LVEF from echo reports 0.673 (-0.043, 1.000) 0.841 (0.271, 1.000)

Effect of scanner on LVEF estimation: physician (MD) vs Nurse Practitioner (N)

Observation Rater 1 of LVEF Rater 2 of LVEF ICC (95% CI) MD (n = 95) ICC (95% CI) N (247)

1 ML model Level III expert visual LVEF on randomized single 
videos

0.582 (−0.015, 0.997) 0.800 (0.154, 1.000)

2 ML model Level III expert segmentation LVEF on randomized 
single videos

0.649 (−0.028, 0.999) 0.810 (0.373, 1.000)

3 ML model Level III expert visual LVEF, accounting for all videos 
for a participant

0.550 (−0.020, 0.997) 0.845 (0.784, 1.000)

4 ML model Level III expert segmentation LVEF, accounting for all 
videos for a participant

0.569 (−0.015, 0.995) 0.884 (0.490, 1.000)

5 ML model Derived LVEF from echo reports 0.657 (−0.003, 0.998) 0.840 (0.715, 1.000)
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majority of scans performed by less experienced  scan-
ners  (nurse practitioners) who were particularly keen to 
enroll participants in this study.

Although previous studies have examined the accuracy 
of other ML models for LVEF estimation, they did not 
utilize clinician driven POCUS and instead focused on 
echocardiogram data [1, 16, 17] or imaging performed by 
sonographers [14]. Asch et  al., showed good agreement 
in an ML model estimation of LVEF compared to refer-
ence values on cardiac POCUS. However the majority of 
clips were acquired by sonographers (protocol 1), with 
only a subset scanned by nurses facilitated by an artificial 
intelligence powered scanning software, not widely avail-
able for routine use (protocol 2) [9]. Furthermore, this 
study did not examine clinical features that may influence 
model performance to give insight on considerations for 
use. The impact of imaging differences in clinical POCUS 
as compared to echocardiography should not be under-
estimated. Crockett et al. applied a “best-in-class” echo-
cardiography trained ML model, EchoNet-Dynamic, to 
a retrospective collection of cardiac POCUS studies and 
found suboptimal ML model performance with an AUC 
of only 0.74 versus the published benchmark of 0.97 for 
the classification of LVEF < 50% [8]. Our model fared 
slightly better with ICC of 0.77 to 0.84 but was similarly 
impacted by issues regarding image quality related to 
scanner and clinical factors.

Our study had robust clinical characterization of the 
cohort and we utilized 5 forms of reference standards to 
capture the uncertainty associated with LVEF analysis 
on cardiac ultrasound. Part of the rationale for multiple 
reference standards was due to the reduction in access to 
same day formal echocardiography during the COVID-
19 pandemic. In lieu of same day formal echocardiogram, 
we had a level III echocardiographer’s blinded visual and 
segmentation-based estimation of the LVEF on POCUS 

videos as the reference standards. The range in the ML 
model’s ICC with the various reference standards indi-
cates the clinical challenge of consistent LVEF estima-
tion based on single videos. The design of our study 
allowed for evaluation of the ML model’s performance on 
a cohort with a high prevalence of arrhythmia, elevated 
BMI, and imaging by novice scanners, which may better 
reflect real-world settings. Furthermore, the well char-
acterized cohort enabled subgroup analyses to delineate 
conditions that may contribute to model failure.

When examining ML model performance by type of 
reference rater and subgroup, some interesting observa-
tions emerge. Although the ML model performed well 
relative to expert annotation for individual video files, the 
same cannot be said when the model was applied to the 
participant level. When the LVEF was averaged across 
all the videos for an individual, the ICC notably dete-
riorated. This suggests that there is a substantial differ-
ence in the appearance of LVEF between videos, likely a 
reflection of poor and/or inconsistent image quality. This 
was seen most prominently in the ML model compari-
sons with randomized single videos when the expert was 
forced to assign an LVEF without the context of other 
clips. The ICC is slightly better if the reference standard 
is level III LVEF accounting for all videos for a participant 
as this allows the expert to assign an LVEF that applies to 
all images based on the summation of data. This is similar 
to clinical practice where the expert is likely assigning an 
overall study LVEF, applying a heavier weighting to vid-
eos deemed most valid and discounting videos of poorer 
quality.

Co-morbid conditions such as obesity and atrial fibril-
lation and factors like sex of the patient and the qualifi-
cations of the scanner have been known to affect the 
quality of the point of care ultrasound image [18, 19]. 
As poorer image quality can reduce the accuracy of the 

Fig. 3 Central illustration: performance of machine learning model for left ventricular ejection fraction on clinician scanned point of care 
ultrasound in heart failure clinic. AF/AFL atrial fibrillation/flutter, HF heart failure, ICC intraclass correlation, LVEF left ventricular ejection fraction, ML 
machine learning, POCUS point of care ultrasound
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LVEF estimation for all types of raters, we investigated 
the effects of BMI, sex, atrial fibrillation or atrial flutter, 
and the type of scanner on interpretation of the LVEF. 
Siadecki et al., showed that the quality of cardiac POCUS 
images decreases as BMI increases [20] though this did 
not seem to be associated with lower ICC in our study. 
On the other hand, videos while in AF or AFL correlated 
with lower ICC values. Although there is very limited 
data regarding the impact of AF/AFL on validity and 
reproducibility of LVEF estimation on echocardiogram 
[21], our study demonstrate that the rhythm likely plays 
a role in accuracy of ML model estimation of LVEF which 
may also impact human interpretation.

Notably, when the POCUS was scanned by nurses, the 
ML model had higher agreement to the reference stand-
ard than when the POCUS was scanned by a physician. 
This unexpected finding was examined more closely with 
characterization of the cohort for which the clips were 
obtained. There were 342 video files that were of adequate 
quality for ML LVEF estimation. Of these, approximately 
28% were obtained by physicians. Closer examination of 
the cohort demonstrated significant differences that may 
explain this finding. The proportion of videos of patients 
with BMI < 30 were similar between nurse and physician 
scans (76–77%); however, physician videos were more 
likely to be obtained from patients with AF/AFL as com-
pared to the nurse scanned clips (41% vs. 28%, p = 0.01). 
Heart rate and diastolic blood pressure were also signifi-
cantly higher in the physician cohort which may reflect a 
less stable patient population. Patients who are less opti-
mized from a heart failure point of view may have diffi-
culty participating in maneuvers such as breath-holding 
or laying in the left lateral decubitus position for optimal 
scanning. The irregularity of heart rate with atrial fibrilla-
tion also decreases the accuracy of expert and ML model 
LVEF estimation.

As demand for echocardiography increases with an 
aging population, the need for accessible cardiac imag-
ing has become more pronounced. The ML model exam-
ined in this study is computationally light weight and can 
be loaded onto portable and hand carried ultrasound 
platforms for rapid and automated estimation of LVEF. 
ML augmented interpretation of cardiac ultrasound is 
an opportunity to evaluate LV function in between for-
mal imaging, reduce the demand for formal echo, and/
or facilitate triaging of echo request. ML estimation of 
LVEF on POCUS devices can guide treatment decisions 
at the bedside, potentially expediting care, reducing costs 
within the health care system, and improving the patient 
experience.

This study has several limitations. Although our cohort 
represents one of the largest cardiac POCUS studies for 

validation of an ML model the sample size is relatively 
modest. We allowed for clinician scanners with a range 
of experience to reflect real-world imaging, however, this 
did result in many videos that were insufficient for analy-
sis. The low number of videos feasible for ML estimation 
may reduce the generalizability of our study results. The 
low-quality imaging obtained on cardiac POCUS, due to 
variable expertise and patient factors, will likely remain 
a major pain point for the widespread use of cardiac 
POCUS and by extension ML augmented POCUS.

Future studies with more participants and higher qual-
ity videos can further support the use of the ML model 
in clinical settings. Furthermore, the ML model does 
not test other parameters of LV function besides LVEF 
such as stroke volume and cardiac output. External vali-
dation will also be essential for the clinical application 
of our model. As with all ML models vying for applica-
tion in clinical settings, the outputs should not be used 
as the sole factor that directs therapy. ML outputs should 
be regarded as a component among many that should 
be taken in consideration and integrated by a skilled 
clinician.

Conclusion
In summary, we demonstrate that our ML model is able 
to estimate LVEF on cardiac POCUS images from a 
cohort of heart failure patients with good inter-rater reli-
ability (ICC = 0.77 to 0.84) compared with several ref-
erence standards. However, image quality and clinical 
factors including atrial fibrillation/flutter have adverse 
impact on ML model analysis feasibility and performance 
and should be considered when applying ML models for 
clinical use.

Clinical perspectives
Machine learning models that have been trained and tested 
on echocardiogram data for predicting LVEF (Left Ventric-
ular Ejection Fraction) can be successfully applied to clini-
cian-driven point-of-care ultrasound. However, the quality 
of the ultrasound images is a major limitation for broad 
application, and in certain settings, such as arrhythmia, the 
model may fail.
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