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Abstract

This study sought to examine layer-specific longitudinal and circumferential systolic and 

diastolic strain, strain rate (SR) and diastolic time intervals in hypertensive patients with 

and without diastolic dysfunction. Fifty-eight treated hypertensive patients were assigned 

to normal diastolic function (NDF, N = 39) or mild diastolic dysfunction (DD, N = 19) group. 

Layer-specific systolic and diastolic longitudinal and circumferential strains and SR were 

assessed. Results showed no between-group difference in left ventricular mass index (DD: 

92.1 ± 18.1 vs NDF: 88.4 ± 16.3; P = 0.44). Patients with DD had a proportional reduction in 

longitudinal strain across the myocardium (endocardial for DD −13 ± 4%; vs NDF −17 ± 3, 

P < 0.01; epicardial for DD −10 ± 3% vs NDF −13 ± 3%, P < 0.01; global for DD: −12 ± 3% vs 

NDF: −15 ± 3, P = 0.01), and longitudinal mechanical diastolic impairments as evidenced 

by reduced longitudinal strain rate of early diastole (DD 0.7 ± 0.2 L/s vs NDF 1.0 ± 0.3 L/s, 

P < 0.01) and absence of a transmural gradient in the duration of diastolic strain (DD 

endocardial: 547 ± 105 ms vs epicardial: 542 ± 113 ms, P = 0.24; NDF endocardial: 566 ± 86 ms 

vs epicardial: 553 ± 77 ms, P = 0.03). Patients with DD also demonstrate a longer duration 

of early circumferential diastolic strain (231 ± 71 ms vs 189 ± 58 ms, P = 0.02). In conclusion, 

hypertensive patients with mild DD demonstrate a proportional reduction in longitudinal 

strain across the myocardium, as well as longitudinal mechanical diastolic impairment, and 

prolonging duration of circumferential mechanical relaxation.
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Introduction

Chronic exposure to elevated afterload is associated 
with maladaptive left ventricular (LV) remodeling, 
which involves myocardial hypertrophy, collagen 
deposition and interstitial fibrosis, ultimately resulting 
in cardiac dysfunction (1, 2). Two-dimensional (2D) 
strain (ε) imaging can be employed to detect regional 
and global myocardial abnormalities not recognized 
by conventional echocardiography. Accordingly, 
impaired systolic and diastolic (ε) has been reported in 
patients with hypertension (3, 4). Nevertheless, global 
ε does not provide a comprehensive evaluation of LV 
mechanics, as it only measures global function and not 
myocardial layer-specific activity. The endocardium is 
the most susceptible layer to the early deleterious effects 
of hypertension, however, as the disease progresses, the 
pathology proliferates resulting in gradual deterioration 
of mid-myocardial and epicardial activity as well (5). 
Accordingly, different stages of hypertension may result 
in layer-specific dysfunction that cannot be detected from 
single-layer assessment.

Layer-specific strain is a new powerful tool that 
could circumvent such limitations (6) It provides a 
comprehensive examination of the three myocardial 
layers, and thus, is able to discern the source and 
progression of myocardial mechanical dysfunction. In 
this exploratory study, we sought to examine the effects of 
hypertension in patients with normal diastolic function 
(NDF) and mild DD on layer-specific circumferential and 
longitudinal systolic ε and strain rate (SR) as well as time 
intervals for layer-specific diastolic ε.

Methods

Patients

Fifty-eight patients (28 males, 30 females; age: 52 ± 8 years) 
with medicated essential hypertension were invited to 
take part at random from primary care practice. Patients 
had no evidence for cardiovascular disease, diabetes or 
secondary causes of hypertension that may affect cardiac 
function. Hypertension was defined as systolic blood 
pressure of >140 mmHg and diastolic blood pressure of 
>90 mmHg. All patients had a normal EF (>55%) and were 
divided into 2 groups: Group 1 (N = 39) had NDF while 
Group 2 (N = 19) had grade I (N = 16) and grade II DD 
(N = 3), based on joint criteria from the American Society 
of Echocardiography (ASE) and the European Association 
of Cardiovascular Imaging (EACVI) (7). The data were 

obtained from participants who were enrolled in a larger 
focused study comparing patients with hypertension 
and those with chronic kidney disease (8). The study 
was approved by the Black Country Research Ethics 
Committee (REC:09/H1202/113) and adhered to the 
Declaration of Helsinki. Informed consent was obtained 
from all individuals included in the study.

Echocardiography

All echocardiographic images were obtained using a 
commercially available ultrasound system (Vivid 7 or 
Vivid Q; GE Medical, Horten, Norway) with a 1.5–4 MHz 
phased array transducer. Images were acquired from 
participants in a left lateral decubitus position at the 
end respiration by a single experienced sonographer 
in accordance with ASE and EACVI guidelines (7, 9). 
Three consecutive cycles for each image were collected 
and stored for later offline analysis, these included 
parasternal long-axis, parasternal short-axis, (basal and 
papillary levels) and the apical 2-, 3- and 4-chamber 
orientations and were stored in a Raw Digital Imaging 
for Communications in Medicine (DICOM) format for 
offline analysis using a commercially available software 
(Echo-Pac version 7.1; GE Medical, Horten, Norway). 
Heart rate was determined from the electrocardiogram 
inherent to the ultrasound system.

Conventional M-mode, 2-dimensional,  

Doppler and tissue Doppler

LV dimensions were analyzed M-mode configuration, 
including septal thickness (IVSd, IVSs), posterior wall 
thickness (PWd, PWs) and LV internal dimension (LVIDd, 
LVIDs). LV and atrial volumes (LAV) were measured by 
Simpson’s biplane method as well as EF. LV mass was 
calculated using the ASE-corrected Deveraux formula (14), 
relative wall thickness (RWT) was calculated as (2*PWd)/
LVIDd and LAV was indexed for body surface area.

Pulsed-wave and tissue Doppler were employed to 
assess diastolic function according to the recommendation 
of EACVI (12). Measures included early (E) and late 
(A) transmitral inflow velocities, their ratio (E/A), 
deceleration time (Dec T), isovolumic relaxation time 
(IVRT) and diastolic filling time (DFT). The duration of 
aortic valve closure (AVC) was measured from the pulsed-
wave Doppler signal from the LV outflow tract while 
mitral valve opening (MVO) and closure (MVC) was 
taken from the trans-mitral pulsed-wave Doppler signal. 
Mitral annular velocities were obtained at the septum and 

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International License.

https://doi.org/10.1530/ERP-17-0072
www.echorespract.com © 2018 The authors

Published by Bioscientifica Ltd



H Sharif et al. Systolic and diastolic strain in 
hypertensive patients

435:1

lateral aspects for peak early (E′) and late (A′) myocardial 
diastolic velocities. In addition, E/E′ was averaged from 
the septal and lateral walls as a non-invasive index of LV 
filling pressures (10).

Myocardial speckle tracking

Images were acquired from the same orientations as for 
conventional imaging, but were optimized to a frame-rate 
within 40–90 frames per second. The focal zone was placed 
mid-LV cavity to reduce the impact of beam divergence 
while gain, dynamic range and reject were adjusted to 
maximize signal-to-noise ratio and further delineate the 
endocardial/epicardial borders.

Peak global transmural, endocardial and 

epicardial function

Peak (endocardial, mid-layer and epicardial) longitudinal 
ε and SR were calculated from the apical 4-chamber 
orientation as an average of the 6 regional segments 
(basal to apical). Circumferential ε was measured from 
the parasternal short-axis images at the basal and mid-
levels and global peak ε and SR values were calculated as 
an average of all segments. During offline analysis, the 
endocardial border was manually traced, and the region 
of interest was adjusted to take the full thickness of 
the ventricle into account. The software automatically 
produced global ε and SR as well as separate ε curves 
(not SR) for the endocardial and epicardial layers. The 
raw data were exported to a spreadsheet (Microsoft Excel 
2003) where all data points underwent cubic spline 
interpolation to provide 300 data points for both systole 
and diastole as previously described (11). Specific ε and 
SR were then calculated at 5% increments throughout 
the cardiac cycle allowing for a temporal assessment. 
Overall function was determined by the global peak 
ε from transmural, endocardial and epicardial layers 
as automatically determined by the EchoPac software 
(Version 13.1) for both longitudinal and circumferential 
planes. A peak strain endo-epi gradient was calculated as 
the difference between the two layers. Global peak systolic 
SR (SRS), peak early diastolic (SRE) and peak late diastolic 
SR (SRA) were obtained only from global longitudinal and 
circumferential planes.

Time intervals for layer-specific diastolic ε data 
were calculated from longitudinal (4-chamber) and 
circumferential (basal and mid-levels) curves to allow 
global, endocardial and epicardial comparisons. 
Parameters included duration of early diastolic strain 

(Dur EStrain) measured from the onset of myocardial 
lengthening to the onset of diastasis and time of overall 
diastolic strain (Dur DiaStrain) defined as the time from 
the onset of myocardial lengthening to the point where 
the ε returns to baseline length (Fig. 1). Endo-epi gradients 
were calculated for all parameters as the difference 
between endocardial and epicardial timings. All time data 
were corrected for heartrate.

Statistical analysis

A Student’s t test was used to determine between-
group differences in demographics, conventional 
echocardiographic parameters, global ε measures and 
endo-epi strain gradient. A Kruskal–Wallis non-parametric 
test was used to determine differences in the amount of 
antihypertensive medications taken between groups. A 
two-way (group × layer) repeated measures analysis of 
variance (ANOVA) was performed to compare endocardial 
and epicardial ε parameters and timing parameters within 
and between groups. A Student’s t test post hoc was used 
if significant interactions or main effects were found. 
Data were reported as means ± S.D., and level of statistical 
significance was set at P ≤ 0.05. Statistical analyses were 
performed using Statistical Package for Social Sciences 
(SPSS 21.0) software.

Results

Participant demographics are presented in Table  1. 
Hypertensive patients with NDF were younger than 
patients with DD. There was no difference between the 
groups for weight, blood pressure or BMI. Both groups 
were taking the same amount of antihypertensive 
medications; however, patients with DD had significantly 
higher resting heart rates.

Conventional echocardiography

LV structural and functional data are presented in Table 2. 
Patients with DD had larger IVSd, LVPWd and RWT. 
Individuals with NDF had significantly larger LVIDd 
and LAVi. Patients with DD had lower E and higher 
A resulting in a lower E:A ratio. Dec T and IVRT were 
significantly longer in patients with DD; however, DFT 
was significantly longer in the NDF group. Patients with 
DD had significantly lower septal and lateral E′ velocities 
and higher E/E′. There were no between-group differences 
in AVC, MVC, MVO and EF.
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Longitudinal strain

In both groups, endocardial ε was greater than epicardial 
ε resulting in a transmural gradient (Table 3). Absolute 
global, endocardial and epicardial ε were significantly 
lower in patients with DD, but there was no difference 
in the epi-endo gradient between groups (Fig.  2A and 

Table 3). The duration of overall diastolic ε was similar 
across the myocardium in patients with DD; however, 
in individuals with NDF, the duration of endocardial 
diastolic ε was longer than that of epicardial resulting 
in a transmural time gradient (Fig.  3). Patients with 
DD had lower SRE (Fig. 4). We performed an additional 
analysis controlling for the between-group differences 
in age, as age highly influences diastolic function, and 
found that the DD group still exhibited lower global 
strain compared to the NDF group (6.3 ± 1.0 vs 7.6 ± 1.5; 
P = 0.001).

Circumferential strain (basal & mid-levels)

In both groups, endocardial ε was greater than epicardial ε 
at both basal and mid-levels, and there were no between-
group differences in the endo-epi gradients (Fig. 2B and C 
and Table 3). There were no between-group differences in 
peak ε nor systolic SR at the basal and mid-layers. Patients 
with DD had prolonged duration of early diastolic ε across 
the myocardium at the basal level (Fig.  5A), whereas 
only endocardial and epicardial early diastolic ε were 
prolonged in the mid-level (Fig.  5B and Table  3). There 
was no between-group difference in the duration of 
overall diastolic ε.

Figure 1
Analysis of temporal systolic and diastolic strain.

Table 1 Participant characteristics.

 
 

Normal 
diastolic 
function

 
Diastolic 

dysfunction

 
 

P-Value

N 39 19
Age (years) 50 ± 7 57 ± 7 <0.001
Gender 17 male,  

22 female
11 male,  
8 female

Weight (kg) 79 ± 14 78 ± 12 0.87
Height (cm) 168 ± 94 169 ± 11 0.75
BMI (kg/m2) 28 ± 4 28 ± 4 0.96
Heart rate (bpm) 64 ± 10 71 ± 11 0.01
Blood pressure (mmHg)
Systolic 141 ± 13 146 ± 12 0.19
Diastolic 85 ± 9 88 ± 9 0.32
Antihypertensives (%)
 ACE 68 44 0.09
 Ca antagonists 39 50 0.64
 Diuretics 32 56 0.06
 B-blockers 16 6 0.39
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Discussion

The key findings of this study are: (1) absolute peak 
longitudinal ε is proportionally reduced across the 
myocardium in patients with mild DD resulting in 
a maintained transmural gradient, (2) patients with 
mild DD exhibit longitudinal diastolic mechanical 
impairments, as evidenced by reduced longitudinal 
SRE and absence of longitudinal transmural gradient 
in the duration of overall diastolic ε and (3) duration 
of circumferential diastolic ε is prolonged in patients 
with DD as a potential compensatory mechanism for the 
longitudinal diastolic impairments.

Table 2 Left ventricular structural and functional parameters.

 Normal diastolic 
function

Diastolic 
dysfunction

 
P-Value

Structural parameters
 IVSd (cm) 1.1 ± 0.2 1.3 ± 0.2 0.001
 LVIDd (cm) 4.7 ± 0.5 4.3 ± 0.5 0.01
 LVPWd (cm) 0.9 ± 0.2 1.1 ± 0.1 0.03
 IVSs (cm) 1.5 ± 0.2 1.7 ± 0.2 0.06
 LVIDs (cm) 2.9 ± 0.4 2.8 ± 0.5 0.25
 LVPWs (cm) 1.5 ± 0.2 1.6 ± 0.2 0.32
 LVMi (g/m2) 88.4 ± 16.3 92.1 ± 18.1 0.44
 RWT 0.41 ± 0.1 0.50 ± 0.1 <0.001
 LVEDV (mL) 89 ± 22 79 ± 24 0.38
 LAV (mL) 52 ± 13 41 ± 18 0.01
 LAVi (mL/m2) 27.8 ± 7.2 21.7 ± 8.9 0.007
Functional parameters
 E (m/s) 0.76 ± 0.14 0.61 ± 0.13 <0.001
 A (m/s) 0.65 ± 0.15 0.74 ± 0.14 0.03
 E:A 1.21 ± 0.27 0.82 ± 0.17 <0.001
 E′ Sept (m/s) 8 ± 1 5 ± 1 <0.001
 E/E′ Sept 9 ± 1 11 ± 2 0.003
 E′ Lat (m/s) 12 ± 2 8 ± 1 <0.001
 E/E′ Lat 6 ± 1 7 ± 1 0.02
 E/E′ Ave 7 ± 1 9 ± 1 0.002
 IVRT (ms) 99 ± 21 111 ± 21 0.04
 Dec T (ms) 184 ± 33 236 ± 56 0.01
 DFT (ms) 555 ± 55 521 ± 51 0.02
 AVC (ms) 355 ± 32 344 ± 31 0.21
 MVO (ms) 438 ± 37 426 ± 54 0.33
 MVC (ms) 24 ± 12 21 ± 12 0.42
 EF (%) 66 ± 6 65 ± 6 0.32

A, late diastolic velocity; AVC, aortic valve closure; Dec T, deceleration 
time; DFT, diastolic filling time; E, early diastolic velocity; E′, mitral annular 
early diastolic velocity; EF, ejection fraction; IVRT, isovolumetric relaxation 
time; IVS, systolic interventricular septum; IVSD, diastolic interventricular 
septum; LAV volume, left atrial volume; LVEDV, left ventricular end 
diastolic volume; LVIDd, left ventricular diastolic internal dimension; LVIDs, 
left ventricular systolic internal dimension; LVMi, left ventricular mass 
index; LVPWd, left ventricular diastolic posterior wall thickness; LVPWs, left 
ventricular systolic posterior wall thickness; MVC, mitral valve opening; 
MVO, mitral valve closure.
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Longitudinal transmural strain

Hypertensive patients with mild DD showed proportionally 
reduced peak longitudinal ε in all myocardial layers, 
resulting in a preserved transmural gradient. Although 
we did not have a normotensive control group for 
comparison, layer-specific longitudinal ε values from NDF 
and DD patients were markedly lower than previously 
reported values of healthy individuals (12). This 
suggests that in hypertension, longitudinal ε across the 
myocardium is deteriorated, while concomitant DD may 
further exacerbate such impairments. Global longitudinal 
ε is commonly thought of as an exclusive marker of 
endocardial deformation (3, 13). However, layer-specific 
ε analysis clearly demonstrates that all 3 myocardial 
layers contribute to longitudinal myocardial movement, 
and therefore, attributing translational planes to specific 
layers may be incorrect. In line with the current results, 
recent studies reported attenuated longitudinal ε across 
the myocardium in hypertensive patients, while global 

longitudinal ε failed to detect any impairments (14, 15). In 
contrast, attenuated longitudinal ε has been reported only 
in the endocardial (16) or endocardial and mid-myocardial 
layers of hypertensive patients (17). The discrepancy in the 
number of affected layers could potentially be explained 
by the duration of hypertension. Experimentally induced 
hypertension showed gradual spread of myocardial fibrosis 
and longitudinal impairment from the endocardium 
toward the epicardium, which took place over an 8-week 
period (5). The temporal progression of myocardial 
dysfunction is supported by human studies, where new 
or mildly hypertensive patients showed impaired strain 
only in the endocardium (15) or in the endocardium 
and mid-myocardium (16) while chronic patients had 
dysfunctional ε in all myocardial layers. It is important to 
note that in the aforementioned studies, patients did not 
have DD, and although both groups in the current study 
had chronic hypertension, the DD still experienced lower 
longitudinal strain compared to the NDF group. Suggesting 
that in addition to prolonged hypertension, LVDD could 
augment its detrimental effects on myocardial ε.

Circumferential transmural strain

Circumferential ε across the myocardium was similar 
between NDF and DD patients. Preserved global 
circumferential ε has been reported in hypertensive 
patients (3, 18), while more recently, layer-specific 
analysis revealed depressed endocardial and mid-
myocardial circumferential ε only, with no alteration in 
epicardial function (16, 17). As mentioned, we did not 
include healthy controls in the study, however, compared 
to standard normative values (12), the current patients 
also showed lower endocardial circumfrential ε while 
epicardial activity was similar. Furthermore, it is implied 

Figure 2
(A, B and C) Peak longitudinal strain in NDF and DD (A), Peak Circ Basal strain in NDF and DD (B) and Peak Circ Mid strain in NDF and DD (C).

Figure 3
Transmural gradient for duration of overall longitudinal diastolic strain.
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that the main contributing factor to dysfunctional 
circumferential ε is an elevation in afterload, even 
if it is transient (17). This may explain the similar 
circumferential ε values between the DD and NDF groups, 
as both have similar average blood pressure. Moreover, 
similar to longitudinal ε, it is noteworthy to mention that 
circumferential ε often employed as an analog for mid-
myocardial deformation (3, 13). However, this notion 
may not be correct, as layer-specific analysis shows that 
all 3 myocardial layers are involved in circumferential 
deformation.

Diastolic strain

Patients with DD showed impaired diastolic mechanical 
function, as evidenced by reduced longitudinal SRE, 
which is in agreement with previous studies (19). 
Furthermore, patients with NDF showed a transmural 
gradient in the duration of longitudinal diastolic ε, where 

the duration of endocardial diastolic ε was longer than 
epicardial. We must therefore consider this as normal 
physiology or at least a diastolic profile not affected by 
DD. In contrast, DD patients did not demonstrate such 
a transmural gradient in longitudinal diastolic ε, which 
may well reflect some degree of layer-specific diastolic 
impairment. In addition, the DD group showed prolonged 
circumferential early diastolic ε across the myocardium. 
We speculate that the prolonged circumferential diastolic 
ε may be a compensatory mechanism for the disordered 
longitudinal SRE. As longitudinal dysfunction results 
in impaired myocardial relaxation, there needs to be 
sustained relaxation elsewhere in order to maximize LV 
filling, and this may well occur by prolonging diastolic 
duration of the circumferential fibers. Compensatory 
increases in circumferential ε have been postulated as a 
means to preserve systolic function when longitudinal 
ε is compromised (13). However, to our knowledge, 
this is the first study to report compensatory diastolic 
circumferential ε in response to impaired compromised 
relaxation. As such, this observation requires further 
investigation.

Limitations

The primary limitation to this study is the small sample 
size of patients. However, calculations of effect size for 
transmural gradients were very small (data not shown), 
suggesting that the findings were of physiological basis 
and not limited by small power. Second, only 3 patients 
had advanced DD and the DD group showed smaller LAV 
compared to the NDF group; however, the majority of 
patients had mild DD and therefore, at this stage of the 

Figure 4
Longitudinal strain rate in patients with NDF and DD.

Figure 5
(A and B) Transmural gradient for duration of Circ Basal early diastolic strain (A) and Transmural gradient for duration of Circ Mid early diastolic strain (B).
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disease, LAV would not have increased, which is confirmed 
by normal E/E′ as well. Third, we did not include a 
normotensive group but the patients from the current 
study showed lower layer-specific ε compared to recently 
published normative values (12). This suggests that future 
studies with larger sample sizes, varying degrees of DD, 
as well as normal healthy participants are warranted in 
order to further elucidate the layer-specific pathology in 
hypertensive patients.

Conclusion

Hypertensive patients with mild DD demonstrate a 
proportional reduction in systolic longitudinal ε across the 
myocardium, thus maintaining the transmural gradient. 
Patients with mild DD also exhibit mechanical diastolic 
impairments, as evidenced by reduced longitudinal 
SRE and absence of a transmural gradient in overall 
diastolic ε, which may be compensated for by prolonging 
circumferential diastolic time.
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