Skip to main content

Impact of methodology and the use of allometric scaling on the echocardiographic assessment of the aortic root and arch: a study by the Research and Audit Sub-Committee of the British Society of Echocardiography

Abstract

The aim of the study is to establish the impact of 2D echocardiographic methods on absolute values for aortic root dimensions and to describe any allometric relationship to body size. We adopted a nationwide cross-sectional prospective multicentre design using images obtained from studies utilising control groups or where specific normality was being assessed. A total of 248 participants were enrolled with no history of cardiovascular disease, diabetes, hypertension or abnormal findings on echocardiography. Aortic root dimensions were measured at the annulus, the sinus of Valsalva, the sinotubular junction, the proximal ascending aorta and the aortic arch using the inner edge and leading edge methods in both diastole and systole by 2D echocardiography. All dimensions were scaled allometrically to body surface area (BSA), height and pulmonary artery diameter. For all parameters with the exception of the aortic annulus, dimensions were significantly larger in systole (P<0.05). All aortic root and arch measurements were significantly larger when measured using the leading edge method compared with the inner edge method (P<0.05). Allometric scaling provided a b exponent of BSA0.6 in order to achieve size independence. Similarly, ratio scaling to height in subjects under the age of 40 years also produced size independence. In conclusion, the largest aortic dimensions occur in systole while using the leading edge method. Reproducibility of measurement, however, is better when assessing aortic dimensions in diastole. There is an allometric relationship to BSA and, therefore, allometric scaling in the order of BSA0.6 provides a size-independent index that is not influenced by the age or gender.

References

  1. Litmanovich D, Bankier AA, Cantin L, Raptopoulos V, Boiselle PM 2009 CT and MRI in diseases of the aorta. American Journal of Roentgenology 193 928–940. (doi:10.2214/AJR.08.2166)

    Article  Google Scholar 

  2. Hiratzka L, Bakris G, Beckman J, Bersin R, Carr V, Casey DE Jr Eagle KA, Hermann LK, Isselbacher EM, Kazerooni EA et al 2010 ACF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for diagnosis and management of patients with thoracic aortic disease: executive summary. Journal of the American College of Cardiology 55 1509–1544. (doi:10.1016/j.jacc.2010.02.010)

    Article  Google Scholar 

  3. Roman M, Devereux R, Fox R, O’Loughlin J 1989 Two-dimensional aortic root in dimensions in normal children and adults. American Journal of Cardiology 64 507–512. (doi:10.1016/0002-9149(89)90430-X)

    CAS  Article  Google Scholar 

  4. Lang R, Bierig M, Devereux R, Flachskampf F, Foster E, Pellika P, Picard MH, Roman MJ, Seward J, Shanewise JS et al 2005 Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. Journal of the American Society of Echocardiography 18 1440–1463. (doi:10.1016/j.echo.2005.10.005)

    Article  Google Scholar 

  5. Gautier M, Detaint D, Fermanian C, Aegerter P, Delorme G, Arnoult F, Milleron O, Raoux F, Stheneur C, Boileau C et al 2010 Nonograms for aortic root diameters in children using two-dimensional echocardiography. American Journal of Cardiology 105 888–894. (doi:10.1016/j.amjcard.2009.11.040)

    Article  Google Scholar 

  6. Devereux R, de Simone G, Arnett D, Best L, Boerwinkle E, Howard B, Kitzman D, Lee ET, Mosley TH Jr Weder A et al 2012 Normal limits in relation to age, body size and gender of two-dimensional echocardiographic aortic root dimensions in persons >15 years of age. American Journal of Cardiology 110 1189–1194. (doi:10.1016/j.amjcard.2012.05.063)

    Article  Google Scholar 

  7. Mirea O, Maffessanti F, Gripari P, Tamborini G, Muratori M, Fusini L, Claudia C, Fiorentini C, Plesea IE, Pepi M 2013 Effects of aging and body size on proximal and ascending aorta and aortic arch: inner edge-to-inner edge reference values in a large adult population by two-dimensional transthoracic echocardiography. Journal of the American Society of Echocardiography 26 419–427. (doi:10.1016/j.echo.2012.12.013)

    Article  Google Scholar 

  8. Batterham AM, George KP, Whyte G, Sharma S, Mckenna W 1999 Scaling cardiac structural data by body dimensions: a review of theory, practice, and problems. International Journal of Sports Medicine 20 495–502. (doi:10.1055/s-1999-8844)

    CAS  Article  Google Scholar 

  9. Dewey FE, Rosenthal D, Murphy DJ Jr Froelicher VF, Ashley EA 2008 Does size matter?: clinical applications of scaling cardiac size and function for body size. Circulation 117 2279–2287. (doi:10.1161/CIRCULATIONAHA.107.736785)

    Article  Google Scholar 

  10. Rammos S, Apostolopoulou SC, Kramer HH, Kozlik-Feldmann R, Heusch A, Laskari CV, Anagnostopoulos C 2005 Normative angiographic data relating to the aorta and pulmonary trunk in children and adolescents. Cardiology in the Young 15 119–124. (doi:10.1017/S1047951105000272)

    Article  Google Scholar 

  11. Dubois D, Dubois E 1916 A formula to estimate the approximate surface area if height and weight be known. Archives of Internal Medicine 17 863–871. (doi:10.1001/archinte.1916.00080130010002)

    CAS  Article  Google Scholar 

  12. Oxborough D, Sharma S, Shave R, Whyte G, Birch K, Artis N, Batterham AM, George K 2012 The right ventricle of the endurance athlete: the relationship between morphology and deformation. Journal of the American Society of Echocardiography 25 263–271. (doi:10.1016/j.echo.2011.11.017)

    Article  Google Scholar 

  13. Glass N 1969 Discussion of calculation of power function with special reference to respiratory metabolism in fish. Journal of the Fisheries Research Board of Canada 26 2643–2650.

    Article  Google Scholar 

  14. Cohen J 1988 Statistical power analysis for the behavioural sciences. 2nd edn. New Jersey, USA: Lawrence Erlbaum.

    Google Scholar 

  15. Schaefer B, Lewin M, Stout K, Gill E, Prueitt A, Byers P, Otto CM 2008 The bicuspid aortic valve: an integrated phenotype classification of leaflet morphology and aortic root shape. Heart 94 1634–1638. (doi:10.1136/hrt.2007.132092)

    CAS  Article  Google Scholar 

  16. Son M, Chang S, Kwak J, Lim H, Park S, Choi J, Lee S, Park S, Kim D, Oh J 2013 Comparative measurement of aortic root by transthoracic echocardiography in normal Korean population based on two different guidelines. Cardiovascular Ultrasound 11 28. doi:10.1186/1476-7120-11-28)

    Article  Google Scholar 

  17. Lin FY, Devereux RB, Roman MJ, Meng J, Jow VM, Jacobs A, Weinsaft JW, Shaw LJ, Berman DS, Gilmore A et al 2008 Assessment of the thoracic aorta by multidetector computed tomography: age- and sex-specific reference values in adults without evident cardiovascular disease. Journal of Cardiovascular Computed Tomography 2 298–308. (doi:10.1016/j.jcct.2008.08.002)

    Article  Google Scholar 

  18. Tsang J, Lytwyn M, Farag A, Zeglinski M, Wallace K, DaSilva M, Bohonis S, Walker JR, Tam JW, Strzelczyk J et al 2012 Multimodality imaging of aortic dimensions: a comparison of transthoracic echocardiography with multidetector row computed tomography. Echocardiography 29 735–741.

    Article  Google Scholar 

  19. Bannas P, Groth M, Rybcynski M, Sheikhzadeh S, von Kodolitsch Y, Graessner J, Lund G, Adam G, Habermann CR 2013 Assessment of aortic dimensions in patients with marfan syndrome: intraindividual comparison of contrast-enhanced and non-contrast magnetic resonance angiography with echocardiography. International Journal of Cardiology 167 190–196. (doi:10.1016/j.ijcard.2011.12.041)

    Article  Google Scholar 

  20. Batterham A, George K 1998 Modeling the influence of body size and composition on M-mode echocardiographic dimensions. American Journal of Physiology 274 701–708.

    Google Scholar 

  21. Batterham A, Shave R, Oxborough D, Whyte G, George K 2008 Longitudinal plane colour tissue-Doppler myocardial velocities and their association with left ventricular length, volume, and mass in humans. European Journal of Echocardiography 9 542–546. (doi:10.1093/ejechocard/jen114)

    Article  Google Scholar 

  22. Ng C, Wells A, Padley S 1999 ACT sign of chronic pulmonary arterial hypertension: the ratio of main pulmonary artery to aortic diameter. Journal of Thoracic Imaging 14 270–278. (doi:10.1097/00005382-199910000-00007)

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Oxborough PhD.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oxborough, D., Ghani, S., Harkness, A. et al. Impact of methodology and the use of allometric scaling on the echocardiographic assessment of the aortic root and arch: a study by the Research and Audit Sub-Committee of the British Society of Echocardiography. Echo Res Pract 1, 1–9 (2014). https://doi.org/10.1530/ERP-14-0004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-14-0004

Keywords

  • 2D echocardiography
  • aortic root
  • allometric scaling