Skip to main content

The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate

Abstract

Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.

References

  1. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP etal 2011 Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE Consensus Statement on Methodology and Indications Endorsed by the Japanese Society of Echocardiography. European Journal of Echocardiography 12 167–205. (doi:10.1093/ejechocard/jer021).

    Article  Google Scholar 

  2. Manovel A, Dawson D, Smith B, Nihoyannopoulos P 2010 Assessment of left ventricular function by different speckle-tracking software. European Journal of Echocardiography 11 417–421. (doi:10.1093/ejechocard/jep226).

    Article  Google Scholar 

  3. Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Stoylen A, Ihlen H, Lima JA, Smiseth OA etal 2006 Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. Journal of the American College of Cardiology 47 789–793. (doi:10.1016/j.jacc.2005.10.040).

    Article  Google Scholar 

  4. Adamu U, Schmitz F, Becker M, Kelm M, Hoffmann R 2009 Advanced speckle tracking echocardiography allowing a three-myocardial layer-specific analysis of deformation parameters. European Journal of Echocardiography 10 303–308. (doi:10.1093/ejechocard/jen238).

    Article  Google Scholar 

  5. Lafitte S, Perlant M, Reant P, Serri K, Douard H, DeMaria A, Roudaut R 2009 Impact of impaired myocardial deformations on exercise tolerance and prognosis in patients with asymptomatic aortic stenosis. European Journal of Echocardiography 10 414–419. (doi:10.1093/ejechocard/jen299).

    Article  Google Scholar 

  6. Cimino S, Canali E, Petronilli V, Cicogna F, De Luca L, Francone M, Sardella G, Iacoboni C, Agati L 2013 Global and regional longitudinal strain assessed by two-dimensional speckle tracking echocardiography identifies early myocardial dysfunction and transmural extent of myocardial scar in patients with acute ST elevation myocardial infarction and relatively preserved LV function. European Heart Journal Cardiovascular Imaging 14 805–811. (doi:10.1093/ehjci/jes295).

    CAS  Article  Google Scholar 

  7. Fontana A, Zambon A, Cesana F, Giannattasio C, Trocino G 2012 Tissue Doppler, triplane echocardiography, and speckle tracking echocardiography: different ways of measuring longitudinal myocardial velocity and deformation parameters. A comparative clinical study. Echocardiography 29 428–437. (doi:10.1111/j.1540-8175.2011.01618.x).

    Article  Google Scholar 

  8. Nucifora G, Badano LP, Dall’Armellina E, Gianfagna P, Allocca G, Fioretti PM 2009 Fast data acquisition and analysis with real time triplane echocardiography for the assessment of left ventricular size and function: a validation study. Echocardiography 26 66–75. (doi:10.1111/j.1540-8175.2008.00762.x).

    Article  Google Scholar 

  9. Malm S, Frigstad S, Sagberg E, Steen PA, Skjarpe T 2006 Real-time simultaneous triplane contrast echocardiography gives rapid, accurate, and reproducible assessment of left ventricular volumes and ejection fraction: a comparison with magnetic resonance imaging. Journal of the American Society of Echocardiography 19 1494–1501. (doi:10.1016/j.echo.2006.06.021).

    Article  Google Scholar 

  10. Ren M, Tian JW, Leng XP, Wang HM, Wang Y, Wang ZZ 2009 Assessment of global and regional left ventricular function after surgical revascularization in patients with coronary artery disease by real-time triplane echocardiography. Journal of Ultrasound in Medicine 28 1175–1184.

    Article  Google Scholar 

  11. Maffessanti F, Nesser HJ, Weinert L, Steringer-Mascherbauer R, Niel J, Gorissen W, Sugeng L, Lang RM, Mor-Avi V 2009 Quantitative evaluation of regional left ventricular function using three-dimensional speckle tracking echocardiography in patients with and without heart disease. American Journal of Cardiology 104 1755–1762. (doi:10.1016/j.amjcard.2009.07.060).

    Article  Google Scholar 

  12. de Isla LP, Vivas D, Zamorano JL 2008 Three-dimensional speckle tracking. Current Cardiovascular Imaging Reports 1 25–29. (doi:10.1007/s12410-008-0006-1).

    Article  Google Scholar 

  13. Nesser JH, Mor-Avi V, Gorissen W, Weinert L, Steringer-Mascherbauer R, Niel J, Sugeng L, Lang RM 2009 Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. European Heart Journal 30 1565–1573. (doi:10.1093/eurheartj/ehp187).

    Article  Google Scholar 

  14. Kleijn SA, Aly MF, Terwee CB, van Rossum AC, Kam O 2011 Reliability of left ventricular volumes and function measurements using three-dimensional speckle tracking echocardiography. European Journal of Echocardiography 12 159–168. (doi:10.1093/ejechocard/jer174).

    Google Scholar 

  15. Reant P, Barbot L, Touche C, Dijos M, Arsac F, Pillois X, Landelle M, Roudaut R, Lafitte S 2012 Evaluation of global left ventricular systolic function using three-dimensional echocardiography speckle-tracking strain parameters. Journal of the American Society of Echocardiography 25 68–79. (doi:10.1016/j.echo.2011.10.009).

    Article  Google Scholar 

  16. Lilli A, Baratto MT, Del Meglio J, Chioccioli M, Magnacca M, Svetlich C, Ottonelli AG, Poddighe R, Comella A, Casolo G 2011 Three-dimensional simultaneous strain-volume analysis describes left ventricular remodelling and its progression: a pilot study. European Journal of Echocardiography 12 520–527. (doi:10.1093/ejechocard/jer073).

    Article  Google Scholar 

  17. Kleijn SA, Brouwer WP, Ali MF, Rüssel IK, de Roest GJ, Beek AM, van Rossum AC, Kamp O 2012 Comparison between three-dimensional speckle-tracking echocardiography and cardiac magnetic resonance imaging for quantification of left ventricular volumes and function. European Heart Journal Cardiovascular Imaging 13 834–839. (doi:10.1093/ehjci/jes030).

    Article  Google Scholar 

  18. Duan F, Xie M, Wang X, Li Y, He L, Jiang L, Fu Q 2012 Preliminary clinical study of left ventricular myocardial strain in patients with non-ischemic dilated cardiomyopathy by three-dimensional speckle tracking imaging. Cardiovascular Ultrasound 10 8. (doi:10.1186/1476-7120-10-8).

    Article  Google Scholar 

  19. Kleijn SA, Aly MF, Terwee CB, van Rossum AC, Kamp O 2011 Three-dimensional speckle tracking echocardiography for automatic assessment of global and regional left ventricular function based on area strain. Journal of the American Society of Echocardiography 24 314–321. (doi:10.1016/j.echo.2011.01.014).

    Article  Google Scholar 

  20. Wen H, Liang Z, Zhao Y, Yang K 2011 Feasibility of detecting early left ventricular systolic dysfunction using global area strain: a novel index derived from threedimensional speckle-tracking echocardiography. European Journal of Echocardiography 12 910–916. (doi:10.1093/ejechocard/jer162).

    Article  Google Scholar 

  21. Thebault C, Donal E, Bernard A, Moreau O, Schnell F, Mabo P, Leclercq C 2011 Real-time three-dimensional speckle tracking echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. European Journal of Echocardiography 12 26–32. (doi:10.1093/ejechocard/jeq095).

    Article  Google Scholar 

  22. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J etal 2006 Recommendations for chamber quantification. European Journal of Echocardiography 7 79–108. (doi:10.1016/j.euje.2005.12.014).

    Article  Google Scholar 

  23. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS etal 2002 Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105 539–542. (doi:10.1161/hc0402.102975).

    Article  Google Scholar 

  24. Bland JM, Altman DG 1986 Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1 307–310. (doi:10.1016/S0140-6736(86)90837-8).

    CAS  Article  Google Scholar 

  25. Loukas M, Sharma A, Blaak C, Sorenson E, Mian A 2013 The clinical anatomy of the coronary arteries. Journal of Cardiovascular Translational Research 6 197–207. (doi:10.1007/s12265-013-9452-5).

    Article  Google Scholar 

  26. Yodwut C, Weinert L, Klas B, Lang RM, Mor-Avi V 2012 Effects of frame rate on three-dimensional speckle-tracking-based measurements of myocardial deformation. Journal of the American Society of Echocardiography 25 978–985. (doi:10.1016/j.echo.2012.06.001).

    Article  Google Scholar 

  27. Negishi K, Negishi T, Agler DA, Plana JC, Marwick TH 2012 Role of temporal resolution in selection of the appropriate strain technique for evaluation of subclinical myocardial dysfunction. Echocardiography 29 334–339. (doi:10.1111/j.1540-8175.2011.01586.x).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tudor Trache.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trache, T., Stöbe, S., Tarr, A. et al. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate. Echo Res Pract 1, 71–83 (2014). https://doi.org/10.1530/ERP-14-0025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-14-0025

Keywords

  • 3D speckle tracking
  • 2D speckle tracking
  • image quality
  • volume rate
  • intermethod agreement