Skip to main content

Three-dimensional echocardiography in a dynamic heart phantom: comparison of five different methods to measure chamber volume using a commercially available software

Abstract

Several methods of analysis are available for quantification of left ventricular volumes and ejection fraction using three-dimensional (3D) echocardiography. This study compared the accuracy and reproducibility of five methods of analysis in a novel, irregularly shaped dynamic heart phantom with excellent image quality. Five 3D datasets were acquired on a Philips IE33 platform using an X5-1 3D transducer. Each dataset was analysed by five different methods using the Philips QLab v8.1 software: Methods A1, A2 and A3, semi-automated contour detection with varying degrees of user correction; Method B, Simpson’s biplane method using optimally aligned four- and two-chamber views and Method C, method of discs, manually delineated in reconstructed short-axis views. Time–volume curves were generated for each method and compared with the true volumes measured throughout systole in the phantom heart. A second observer repeated measurements by each method in a single 3D dataset. Method A1 (uncorrected semi-automated contouring) produced the most consistent time–volume curves, although end-diastolic and end-systolic volumes varied between datasets. Any manual correction of contours (Methods A2, A3 and B) resulted in significant variation in the time–volume curves, with less consistent endocardial tracking. Method C was not only the most accurate and reproducible method, but also the most time-consuming one. Different methods of 3D volume quantification vary significantly in accuracy and reproducibility using an irregular phantom heart model. Although contouring may appear optimal in long-axis views, this may not be replicated circumferentially, and the resulting measures appeared to be less robust following the manual correction of semi-automated contours.

References

  1. Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, Faletra FF, Franke A, Hung J, de Isla LP etal 2012 EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. European Heart Journal Cardiovascular Imaging 13 1–46. (doi:10.1093/ehjci/jer316).

    Article  Google Scholar 

  2. Leung KY & Bosch JG 2010 Automated border detection in three-dimensional echocardiography: principles and promises. European Journal of Echocardiography 11 97–108. (doi:10.1093/ejechocard/jeq005).

    Article  Google Scholar 

  3. Jenkins C, Moir S, Chan J, Rakhit D, Haluska B & Marwick TH 2009 Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. European Heart Journal 30 98–106. (doi:10.1093/eurheartj/ehn484).

    Article  Google Scholar 

  4. Shimada YJ & Shiota T 2011 A meta-analysis and investigation for the source of bias of left ventricular volumes and function by three-dimensional echocardiography in comparison with magnetic resonance imaging. American Journal of Cardiology 107 126–138. (doi:10.1016/j.amjcard.2010.08.058).

    Article  Google Scholar 

  5. Caiani EG, Corsi C, Zamorano J, Sugeng L, MacEneaney P, Weinert L, Battani R, Gutierrez JL, Koch R, Perez de Isla L etal 2005 Improved semiautomated quantification of left ventricular volumes and ejection fraction using 3-dimensional echocardiography with a full matrix-array transducer: comparison with magnetic resonance imaging. Journal of the American Society of Echocardiography 18 779–788. (doi:10.1016/j.echo.2004.12.015).

    Article  Google Scholar 

  6. Coon PD, Pollard H, Furlong K, Lang RM & Mor-Avi V 2012 Quantification of left ventricular size and function using contrast-enhanced real-time 3D imaging with power modulation: comparison with cardiac MRI. Ultrasound in Medicine & Biology 38 1853–1858. (doi:10.1016/j.ultrasmedbio.2012.07.001).

    Article  Google Scholar 

  7. Corsi C, Lang RM, Veronesi F, Weinert L, Caiani EG, MacEneaney P, Lamberti C & Mor-Avi V 2005 Volumetric quantification of global and regional left ventricular function from real-time three-dimensional echocardiographic images. Circulation 112 1161–1170. (doi:10.1161/CIRCULATIONAHA.104.513689).

    Article  Google Scholar 

  8. Jacobs LD, Salgo IS, Goonewardena S, Weinert L, Coon P, Bardo D, Gerard O, Allain P, Zamorano JL, de Isla LP etal 2006 Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. European Heart Journal 27 460–468. (doi:10.1093/eurheartj/ehi666).

    Article  Google Scholar 

  9. Wood PW, Choy JB, Nanda NC & Becher H 2014 Left ventricular ejection fraction: it depends on the imaging method. Echocardiography 31 87–100. (doi:10.1111/echo.12331).

    Article  Google Scholar 

  10. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS etal 2005 Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. Journal of the American Society of Echocardiography 18 1440–1463. (doi:10.1016/j.echo.2005.10.005).

    Article  Google Scholar 

  11. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J etal 2006 Recommendations for chamber quantification. European Journal of Echocardiography 7 79–108. (doi:10.1016/j.euje.2005.12.014).

    Article  Google Scholar 

  12. Hoffmann R, von Bardeleben S, ten Cate F, Borges AC, Kasprzak J, Firschke C, Lafitte S, Al-Saadi N, Kuntz-Hehner S, Engelhardt M etal 2005 Assessment of systolic left ventricular function: a multi-centre comparison of cineventriculography, cardiac magnetic resonance imaging, unenhanced and contrast-enhanced echocardiography. European Heart Journal 26 607–616. (doi:10.1093/eurheartj/ehi083).

    Article  Google Scholar 

  13. Mor-Avi V, Jenkins C, Kühl HP, Nesser H, Marwick T, Franke A, Ebner C, Freed BH, Steringer-Mascherbauer R, Pollard H etal 2008 Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. JACC. Cardiovascular Imaging 1 413–423. (doi:10.1016/j. cmg.2008.02.009).

    Article  Google Scholar 

  14. Herberg U, Brand M, Bernhardt C, Trier HG & Breuer J 2011 Variables influencing the accuracy of 2-dimensional and real-time 3-dimensional echocardiography for assessment of small volumes, areas, and distances. Journal of Ultrasound in Medicine 30 899–908.

    Article  Google Scholar 

  15. Hundley WG, Bluemke D, Bogaert JG, Friedrich MG, Higgins CB, Lawson MA, McConnell MV, Raman SV, van Rossum AC, Flamm S etal 2009 Society for Cardiovascular Magnetic Resonance guidelines for reporting cardiovascular magnetic resonance examinations. Journal of Cardiovascular Magnetic Resonance 11 5. (doi:10.1186/1532-429X-11-5).

    Article  Google Scholar 

  16. Buck T, Schon F, Baumgart D, Leischik R, Schappert T, Kupferwasser I, Meyer J, Gorge G, Haude M & Erbel R 1996 Tomographic left ventricular volume determination in the presence of aneurysm by three-dimensional echocardiographic imaging. I: asymmetric model hearts. Journal of the American Society of Echocardiography 9 488–500. (doi:10.1016/S0894-7317(96)90120-0).

    Article  CAS  Google Scholar 

  17. Buck T, Hunold P, Wentz KU, Tkalec W, Nesser HJ & Erbel R 1997 Tomographic three-dimensional echocardiographic determination of chamber size and systolic function in patients with left ventricular aneurysm: comparison to magnetic resonance imaging, cineventriculography, and two-dimensional echocardiography. Circulation 96 4286–4297. (doi:10.1161/01.CIR.96.12.4286).

    Article  CAS  Google Scholar 

  18. Szmigielski C, Rajpoot K, Grau V, Myerson SG, Holloway C, Noble JA, Kerber R & Becher H 2010 Real-time 3D fusion echocardiography. JACC. Cardiovascular Imaging 3 682–690. (doi:10.1016/j.cmg.2010.03.010).

    Article  Google Scholar 

  19. Rajpoot K, Grau V, Noble JA, Szmigielski C & Becher H 2011 Multiview fusion 3-D echocardiography: improving the information and quality of real-time 3-D echocardiography. Ultrasound in Medicine & Biology 37 1056–1072. (doi:10.1016/j.ultrasmedbio.2011.04.018).

    Article  Google Scholar 

  20. Rajpoot K, Grau V, Noble JA, Becher H & Szmigielski C 2011 The evaluation of single-view and multi-view fusion 3D echocardiography using image-driven segmentation and tracking. Medical Image Analysis 15 514–528. (doi:10.1016/j.media.2011.02.007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Wood BAppSc MSc.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, P.W., Gibson, P.H. & Becher, H. Three-dimensional echocardiography in a dynamic heart phantom: comparison of five different methods to measure chamber volume using a commercially available software. Echo Res Pract 1, 51–60 (2014). https://doi.org/10.1530/ERP-14-0051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-14-0051

Keywords