Skip to main content

Prognostic importance of tissue velocity imaging during exercise echocardiography in patients with systolic heart failure

Abstract

Resting echocardiography measurements are poor predictors of exercise capacity and symptoms in patients with heart failure (HF). Stress echocardiography may provide additional information and can be expressed using left ventricular ejection fraction (LVEF), or diastolic parameters (E/E′), but LVEF has some major limitations. Systolic annular velocity (S′) provides a measure of longitudinal systolic function, which is relatively easy to obtain and shows a good relationship with exercise capacity. The objective of this study was to investigate the relationship among S′, E/E′ and LVEF obtained during stress echocardiography and both mortality and hospitalisation. A secondary objective was to compare S′ measured using a simplified two-wall model. A total of 80 patients with stable HF underwent exercise stress echocardiography and simultaneous cardiopulmonary exercise testing. Volumetric and tissue velocity imaging (TVI) measurements were obtained, as was peak oxygen uptake (VO2 peak). Of the total number of patients, 11 died and 22 required cardiac hospitalisation. S′ at peak exertion was a powerful predictor for death and hospitalisation. Cut-off points of 5.3 cm/s for death and 5.7 cm/s for hospitalisation provided optimum sensitivity and specificity. This study suggests that, in patients with systolic HF, S′ at peak exertion calculated from the averaged spectral TVI systolic velocity of six myocardial segments, or using a simplified measure of two myocardial segments, is a powerful predictor of future events and stronger than LVEF, diastolic velocities at rest or exercise and VO2 peak. Results indicate that measuring S′ during exercise echocardiography might play an important role in understanding the likelihood of adverse clinical outcomes in patients with HF.

References

  1. Townsend N, Wickramasinghe K, Bhatnagar P, Smolina K, Nichols M, Leal J, Luengo-Fernandez R, Rayner M Coronary Heart Disease Statistics 2012 Edition 2012 British Heart Foundation London

    Google Scholar 

  2. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA et al. 2012 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. European Heart Journal 33 1787–1847. (doi:10.1093/eurheartj/ehs104)

    PubMed  Article  Google Scholar 

  3. Meta-analysis Global Group in Chronic Heart Failure 2012 The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. European Heart Journal 33 1750–1757. (doi:10.1093/eurheartj/ehr254)

    Article  Google Scholar 

  4. Benge W, Litchfield RL, Marcus ML 1980 Exercise capacity in patients with severe left ventricular dysfunction. Circulation 61 955–959. (doi:10.1161/01.CIR.61.5.955)

    CAS  PubMed  Article  Google Scholar 

  5. Carell ES, Murali S, Schulman DS, Estrada-Quintero T, Uretsky BF 1994 Maximal exercise tolerance in chronic congestive heart failure: relationship to resting left ventricular function. Chest 106 1746–1752. (doi:10.1378/chest.106.6.1746)

    CAS  PubMed  Article  Google Scholar 

  6. Rubis P, Podolec P, Tomkiewicz-Pajak L, Kopec G, Olszowska M, Tracz W 2009 Usefulness of the evaluation of isovolumic and ejection phase myocardial signals during stress echocardiography in predicting exercise capacity in heart failure patients. Echocardiography 26 1050–1059. (doi:10.1111/j.1540-8175.2009.00922.x)

    PubMed  Article  Google Scholar 

  7. Witte KK, Nikitin NP, De Silva R, Cleland JG, Clark AL 2004 Exercise capacity and cardiac function assessed by tissue Doppler imaging in chronic heart failure. Heart 90 1144–1150. (doi:10.1136/hrt.2003.025684)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Florea VG, Henein MY, Anker SD, Francis DP, Chambers JS, Ponikowski P, Coats AJ 2000 Prognostic value of changes over time in exercise capacity and echocardiographic measurements in patients with chronic heart failure. European Heart Journal 21 146–153. (doi:10.1053/euhj.2000.1737)

    CAS  PubMed  Article  Google Scholar 

  9. Wang M, Yip G, Yu C-M, Zhang Q, Zhang Y, Tse D, Kong S-L, Sanderson JE 2005 Independent and incremental prognostic value of early mitral annulus velocity in patients with impaired left ventricular systolic function. Journal of the American College of Cardiology 45 272–277. (doi:10.1016/j.jacc.2004.09.059)

    PubMed  Article  Google Scholar 

  10. Wang M, Yip GW, Wang AY, Zhang Y, Ho PY, Tse MK, Lam PK, Sanderson JE 2003 Peak early diastolic mitral annulus velocity by tissue Doppler imaging adds independent and incremental prognostic value. Journal of the American College of Cardiology 41 820–826. (doi:10.1016/S0735-1097(02)02921-2)

    PubMed  Article  Google Scholar 

  11. Grayburn PA, Appleton CP, DeMaria AN, Greenberg B, Lowes B, Oh J, Plehn JF, Rahko P, St John Sutton M, Eichhorn EJ 2005 Echocardiographic predictors of morbidity and mortality in patients with advanced heart failure: the Beta-blocker Evaluation of Survival Trial (BEST). Journal of the American College of Cardiology 45 1064–1071. (doi:10.1016/j.jacc.2004.12.069)

    PubMed  Article  Google Scholar 

  12. Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D, Voigt J-U, Zamorano JL 2008 Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). European Journal of Echocardiography: the journal of the Working Group on Echocardiography of the European Society of Cardiology 9 415–437. (doi:10.1093/ejechocard/jen175)

    Article  Google Scholar 

  13. Bountioukos M, Elhendy A, van Domburg RT, Schinkel AF, Bax JJ, Krenning BJ, Biagini E, Rizzello V, Simoons ML, Poldermans D 2004 Prognostic value of dobutamine stress echocardiography in patients with previous coronary revascularisation. Heart 90 1031–1035. (doi:10.1136/hrt.2003.029025)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Agricola E, Oppizzi M, Pisani M, Margonato A 2004 Stress echocardiography in heart failure. Cardiovascular Ultrasound 2 11 (doi:10.1186/1476-7120-2-11)

    PubMed  PubMed Central  Article  Google Scholar 

  15. Pedone C, Bax JJ, van Domburg RT, Rizzello V, Biagini E, Schinkel AF, Krenning B, Vourvouri EC, Poldermans D 2005 Long-term prognostic value of ejection fraction changes during dobutamine-atropine stress echocardiography. Coronary Artery Disease 16 309–313. (doi:10.1097/00019501-200508000-00008)

    PubMed  Article  Google Scholar 

  16. Bax JJ, Poldermans D, Elhendy A, Cornel JH, Boersma E, Rambaldi R, Roelandt JR, Fioretti PM 1999 Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography. Journal of the American College of Cardiology 34 163–169. (doi:10.1016/S0735-1097(99)00157-6)

    CAS  PubMed  Article  Google Scholar 

  17. Werner GS, Schaefer C, Dirks R, Figulla HR, Kreuzer H 1994 Prognostic value of Doppler echocardiographic assessment of left ventricular filling in idiopathic dilated cardiomyopathy. American Journal of Cardiology 73 792–798. (doi:10.1016/0002-9149(94)90883-4)

    CAS  PubMed  Article  Google Scholar 

  18. Ciampi Q, Pratali L, Porta MD, Petruzziello B, Manganiello V, Villari B, Picano E, Sicari R 2013 Tissue Doppler systolic velocity change during dobutamine stress echocardiography predicts contractile reserve and exercise tolerance in patients with heart failure. European Heart Journal Cardiovascular Imaging 14 102–109. (doi:10.1093/ehjci/jes096)

    PubMed  Article  Google Scholar 

  19. Sekiguchi M, Adachi H, Oshima S, Taniguchi K, Hasegawa A, Kurabayashi M 2009 Effect of changes in left ventricular diastolic function during exercise on exercise tolerance assessed by exercise-stress tissue Doppler echocardiography. International Heart Journal 50 763–771. (doi:10.1536/ihj.50.763)

    PubMed  Article  Google Scholar 

  20. McIntosh RA, Silberbauer J, Veasey RA, Raju P, Baumann O, Kelly S, Beale L, Brickley G, Sulke N, Lloyd GW 2013 Tissue Doppler-derived contractile reserve is a simple and strong predictor of cardiopulmonary exercise performance across a range of cardiac diseases. Echocardiography 30 527–533. (doi:10.1111/echo.12084)

    PubMed  Article  Google Scholar 

  21. Arena R, Myers J, Aslam SS, Varughese EB, Peberdy MA 2004 Peak VO2 and VE/VCO2 slope in patients with heart failure: a prognostic comparison. American Heart Journal 147 354–360. (doi:10.1016/j.ahj.2003.07.014)

    PubMed  Article  Google Scholar 

  22. Poggio R, Arazi HC, Giorgi M, Miriuka SG 2010 Prediction of severe cardiovascular events by VE/VCO2 slope versus peak VO2 in systolic heart failure: a meta-analysis of the published literature. American Heart Journal 160 1004–1014. (doi:10.1016/j.ahj.2010.08.037)

    PubMed  Article  Google Scholar 

  23. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, Mark DB, McCallister BD, Mooss AN, O’Reilly MG et al. 2002 ACC/AHA 2002 guideline update for exercise testing: summary article. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation 106 1883–1892. (doi:10.1161/01.CIR.0000034670.06526.15)

    PubMed  Article  Google Scholar 

  24. Guazzi M, Myers J, Peberdy MA, Bensimhon D, Chase P, Pinkstaff S, Arena R 2010 Echocardiography with tissue Doppler imaging and cardiopulmonary exercise testing in patients with heart failure: a correlative and prognostic analysis. International Journal of Cardiology 143 323–329. (doi:10.1016/j.ijcard.2009.03.053)

    PubMed  Article  Google Scholar 

  25. Francis DP, Shamim W, Davies LC, Piepoli MF, Ponikowski P, Anker SD, Coats AJ 2000 Cardiopulmonary exercise testing for prognosis in chronic heart failure: continuous and independent prognostic value from VE/VCO(2) slope and peak VO(2). European Heart Journal 21 154–161. (doi:10.1053/euhj.1999.1863)

    CAS  PubMed  Article  Google Scholar 

  26. Nikitin NP, Loh PH, de Silva R, Ghosh J, Khaleva OY, Goode K, Rigby AS, Alamgir F, Clark AL, Cleland JG 2006 Prognostic value of systolic mitral annular velocity measured with Doppler tissue imaging in patients with chronic heart failure caused by left ventricular systolic dysfunction. Heart 92 775–779. (doi:10.1136/hrt.2005.067140)

    CAS  PubMed  Article  Google Scholar 

  27. Mogelvang R, Sogaard P, Pedersen SA, Olsen NT, Marott JL, Schnohr P, Goetze JP, Jensen JS 2009 Cardiac dysfunction assessed by echocardiographic tissue Doppler imaging is an independent predictor of mortality in the general population. Circulation 119 2679–2685. (doi:10.1161/CIRCULATIONAHA.108.793471)

    PubMed  Article  Google Scholar 

  28. Nikitin NP, Witte KK, Thackray SD, de Silva R, Clark AL, Cleland JG 2003 Longitudinal ventricular function: normal values of atrioventricular annular and myocardial velocities measured with quantitative two-dimensional color Doppler tissue imaging. Journal of the American Society of Echocardiography 16 906–921. (doi:10.1016/S0894-7317(03)00279-7)

    PubMed  Article  Google Scholar 

  29. McGowan JH, Cleland JG 2003 Reliability of reporting left ventricular systolic function by echocardiography: a systematic review of 3 methods. American Heart Journal 146 388–397. (doi:10.1016/S0002-8703(03)00248-5)

    PubMed  Article  Google Scholar 

  30. Clark AL, Swan JW, Laney R, Connelly M, Somerville J, Coats AJ 1994 The role of right and left ventricular function in the ventilatory response to exercise in chronic heart failure. Circulation 89 2062–2069. (doi:10.1161/01.CIR.89.5.2062)

    CAS  PubMed  Article  Google Scholar 

  31. Donal E, Coquerel N, Bodi S, Kervio G, Schnell F, Daubert J-C, Carré F 2011 Importance of ventricular longitudinal function in chronic heart failure. European Journal of Echocardiography 12 619–627. (doi:10.1093/ejechocard/jer089)

    PubMed  Article  Google Scholar 

  32. Marwick TH 2003 Stress echocardiography. Heart 89 113–118. (doi:10.1136/heart.89.1.113)

    PubMed  PubMed Central  Article  Google Scholar 

  33. Otasevic P, Popovic ZB, Vasiljevic JD, Pratali L, Vlahovic-Stipac A, Boskovic SD, Tasic N, Neskovic AN 2006 Head-to-head comparison of indices of left ventricular contractile reserve assessed by high-dose dobutamine stress echocardiography in idiopathic dilated cardiomyopathy: five-year follow up. Heart 92 1253–1258. (doi:10.1136/hrt.2005.073999)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Paraskevaidis IA, Adamopoulos S, Kremastinos DT 2001 Dobutamine echocardiographic study in patients with nonischemic dilated cardiomyopathy and prognostically borderline values of peak exercise oxygen consumption: 18-month follow-up study. Journal of the American College of Cardiology 37 1685–1691. (doi:10.1016/S0735-1097(01)01194-9)

    CAS  PubMed  Article  Google Scholar 

  35. Ramahi TM, Longo MD, Cadariu AR, Rohlfs K, Slade M, Carolan S, Vallejo E, Wackers FJ 2001 Dobutamine-induced augmentation of left ventricular ejection fraction predicts survival of heart failure patients with severe non-ischaemic cardiomyopathy. European Heart Journal 22 849–856. (doi:10.1053/euhj.2001.2654)

    CAS  PubMed  Article  Google Scholar 

  36. Rubis P, Podolec P, Kopec G, Olszowska M, Tracz W 2010 The dynamic assessment of right-ventricular function and its relation to exercise capacity in heart failure. European Journal of Heart Failure 12 260–267. (doi:10.1093/eurjhf/hfp200)

    PubMed  Article  Google Scholar 

  37. Podolec P, Rubís P, Tomkiewicz-Pajak L, Kopeć G, Tracz W 2008 Usefulness of the evaluation of left ventricular diastolic function changes during stress echocardiography in predicting exercise capacity in patients with ischemic heart failure. Journal of the American Society of Echocardiography 21 834–840. (doi:10.1016/j.echo.2007.12.008)

    PubMed  Article  Google Scholar 

  38. Grewal J, McCully RB, Kane GC, Lam C, Pellikka PA 2009 Left ventricular function and exercise capacity. Journal of the American Medical Association 301 286–294. (doi:10.1001/jama.2008.1022)

    CAS  PubMed  Article  Google Scholar 

  39. Little WC, Oh JK 2009 Echocardiographic evaluation of diastolic function can be used to guide clinical care. Circulation 120 802–809. (doi:10.1161/CIRCULATIONAHA.109.869602)

    PubMed  Article  Google Scholar 

  40. Pacileo G, Calabrò P, Limongelli G, Russo MG, Pisacane C, Sarubbi B, Calabrò R 2003 Left ventricular remodeling, mechanics, and tissue characterization in congenital aortic stenosis. Journal of the American Society of Echocardiography 16 214–220. (doi:10.1067/mje.2003.10)

    PubMed  Article  Google Scholar 

  41. Notomi Y, Martin-Miklovic MG, Oryszak SJ, Shiota T, Deserranno D, Popovic ZB, Garcia MJ, Greenberg NL, Thomas JD 2006 Enhanced ventricular untwisting during exercise a mechanistic manifestation of elastic recoil described by Doppler tissue imaging. Circulation 113 2524–2533. (doi:10.1161/CIRCULATIONAHA.105.596502)

    PubMed  Article  Google Scholar 

  42. Dandel M, Lehmkuhl H, Knosalla C, Suramelashvili N, Hetzer R 2009 Strain and strain rate imaging by echocardiography–basic concepts and clinical applicability. Current Cardiology Reviews 5 133–148. (doi:10.2174/157340309788166642)

    PubMed  PubMed Central  Article  Google Scholar 

  43. Moonen M, Lancellotti P, Zacharakis D, Pierard L 2009 The value of 2D strain imaging during stress testing. Echocardiography 26 307–314. (doi:10.1111/j.1540-8175.2008.00864.x)

    PubMed  Article  Google Scholar 

  44. Nikitin NP, Witte KK 2004 Application of tissue Doppler imaging in cardiology. Cardiology 101 170–184. (doi:10.1159/000076694)

    PubMed  Article  Google Scholar 

  45. Møller JE, Søndergaard E, Poulsen SH, Seward JB, Appleton CP, Egstrup K 2001 Color M-mode and pulsed wave tissue Doppler echocardiography: powerful predictors of cardiac events after first myocardial infarction. Journal of the American Society of Echocardiography 14 757–763. (doi:10.1067/mje.2001.113367)

    PubMed  Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guy W. L. Lloyd MD FRCP.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the articles Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the articles Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Zalen, J., Patel, N.R., Podd, S.J. et al. Prognostic importance of tissue velocity imaging during exercise echocardiography in patients with systolic heart failure. Echo Res Pract 2, 19–27 (2015). https://doi.org/10.1530/ERP-14-0074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-14-0074

Key Words

  • stress echocardiography
  • tissue Doppler imaging
  • left ventricular ejection fraction