Skip to main content

Prognostic utility of blood pressure-adjusted global and basal systolic longitudinal strain

Abstract

Assessment of global longitudinal systolic strain (GLS) and longitudinal systolic strain of the basal segments (BLS) has shown prognostic value in cardiac disorders. However, strain is reduced with increased afterload. We assessed the prognostic value of GLS and BLS adjusted for afterload. GLS and BLS were determined in 272 subjects with normal ejection fraction and no known coronary disease, or significant valve disease. Systolic blood pressure (SP) and diastolic blood pressure (DP) obtained at the time of echocardiography were used to adjust GLS and BLS as follows: strain×P (mmHg)/120 mmHg and strain×P (mmHg)/80 mmHg. Patients were followed for cardiac events and mortality. The mean age was 53±15 years and 53% had hypertension. There were 19 cardiac events and 70 deaths over a mean follow-up of 26±14 months. Cox analysis showed that left ventricular mass index (P=0.001), BLS (P<0.001), and DP-adjusted BLS (P<0.001) were independent predictors of cardiac events. DP-adjusted BLS added incremental value (P<0.001) to the other two predictors and had an area under the curve of 0.838 for events. DP (P=0.001), age (P=0.001), ACE inhibitor use (P=0.017), and SP-adjusted BLS (P=0.012) were independent predictors of mortality. SP-adjusted BLS added incremental value (P=0.014) to the other independent predictors. In conclusion, DP-adjusted BLS and SP-adjusted BLS were independent predictors of cardiac events and mortality, respectively. Blood pressure-adjusted strain added incremental prognostic value to other predictors of outcome.

References

  1. Nagata Y, Takeuchi M, Wu VC, Izumo M, Suzuki K, Sato K, Seo Y, Akashi YJ, Aonuma K, Otsuji Y 2015. Prognostic value of LV deformation parameters using 2D and 3D speckle-tracking echocardiography in asymptomatic patients with severe aortic stenosis and preserved LV ejection fraction. JACC: Cardiovascular Imaging 8 235–245. (doi:10.1016/j.jcmg.2014.12.009)

    PubMed  Google Scholar 

  2. Rhea IB, Uppuluri S, Sawada S, Schneider BP, Feigenbaum H 2015. Incremental prognostic value of echocardiographic strain and its association with mortality in cancer patients. Journal of the American Society of Echocardiography 28 667–673. (doi:10.1016/j.echo.2015.02.006)

    Article  Google Scholar 

  3. Buss SJ, Emami M, Mereles D, Korosoglou G, Kristen AV, Voss A, Schellberg D, Zugck C, Galuschky C, Giannitsis E et al 2012. Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: incremental value compared with clinical and biochemical markers. Journal of the American College of Cardiology 60 1067–1076. (doi:10.1016/j.jacc.2012.04.043)

    Article  Google Scholar 

  4. Thavendiranathan P, Poulin F, Lim KD, Plana JC, Woo A, Marwick TH 2014. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: a systematic review. Journal of the American College of Cardiology 63 2751–2768. (doi:10.1016/j.jacc.2014.01.073)

    Article  Google Scholar 

  5. AC, Sitges M, Pham PN, Tran da T, Delgado V, Bertini M, Nucifora G, Vidaic J, Allman C, Holman ER et al 2009. Incremental value of 2-dimensional speckle tracking strain imaging to wall motion analysis for detection of coronary artery disease in patients undergoing dobutamine stress echocardiography. American Heart Journal 158 836–844. (doi:10.1016/j.ahj.2009.09.010)

    Article  Google Scholar 

  6. Dahlslett T, Karlsen S, Grenne B, Eek C, Sjoli B, Skulstad H, Smiseth OA, Edvardsen T, Brunvand H 2014. Early assessment of strain echocardiography can accurately exclude significant coronary artery stenosis in suspected non-ST-segment elevation acute coronary syndrome. Journal of the American Society of Echocardiography 27 512–519. (doi:10.1016/j.echo.2014.01.019)

    Article  Google Scholar 

  7. Stanton T, Leano R, Marwick TH 2009. Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circulation Cardiovascular Imaging 2 356–364. (doi:10.1161/CIRCIMAGING.109.862334)

    Article  Google Scholar 

  8. Weiner RB, Weyman AE, Kim JH, Wang TJ, Picard MH, Baggish AL 2012. The impact of isometric handgrip testing on left ventricular twist mechanics. Journal of Physiology 590 5141–5150. (doi:10.1113/jphysiol.2012.236166)

    Article  CAS  Google Scholar 

  9. Donal E, Bergerot C, Thibault H, Ernande L, Loufoua J, Augeul L, Ovize M, Derumeaux G 2009. Influence of afterload on left ventricular radial and longitudinal systolic functions: a two-dimensional strain imaging study. European Journal of Echocardiography 10 914–921. (doi:10.1093/ejechocard/jep095)

    Article  Google Scholar 

  10. Delgado M, Ruiz M, Mesa D, De Lezo Cruz Conde JS, Pan M, Lopez J, Villanueva E, Cejudo L 2013. Early improvement of the regional and global ventricle function estimated by two-dimensional speckle tracking echocardiography after percutaneous aortic valve implantation speckle tracking after CoreValve implantation. Echocardiography 30 37–44. (doi:10.1111/j.1540-8175.2012.01808.x)

    Article  Google Scholar 

  11. Grabskaya E, Becker M, Altiok E, Dohmen G, Brehmer K, Hamada-Langer S, Kennes L, Marx N, Hoffmann R 2011. Impact of transcutaneous aortic valve implantation on myocardial deformation. Echocardiography 28 397–401. (doi:10.1111/j.1540-8175.2010.01378.x)

    Article  Google Scholar 

  12. Carasso S, Cohen O, Mutlak D, Adler Z, Lessick J, Reisner SA, Rakowski H, Bolotin G, Agmon Y 2009. Differential effects of afterload on left ventricular long- and short-axis function: insights from a clinical model of patients with aortic valve stenosis undergoing aortic valve replacement. American Heart Journal 158 540–545. (doi:10.1016/j.ahj.2009.07.008)

    Article  Google Scholar 

  13. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, et al. 2005. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. Journal of the American Society of Echocardiography 18 1440–1463. (doi:10.1016/j.echo.2005.10.005)

    Article  Google Scholar 

  14. Reichek N, Wilson J, St John Sutton M, Plappert TA, Goldberg S, Hirshfeld JW 1982. Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application. Circulation 65 99–108. (doi:10.1161/01.CIR.65.1.99)

    Article  CAS  Google Scholar 

  15. A’roch R, Gustafsson U, Johansson G, Poelaert J, Haney M 2012. Left ventricular strain and peak systolic velocity: responses to controlled changes in load and contractility, explored in a porcine model. Cardiovascular Ultrasound 10 22. (doi:10.1186/1476-7120-10-22)

  16. Bauer M, Cheng S, Unno K, Lin FC, Liao R 2013. Regional cardiac dysfunction and dyssynchrony in a murine model of afterload stress. PLoS ONE 8 e59915. (doi:10.1371/journal.pone.0059915)

    Google Scholar 

  17. Burns AT, La Gerche A, D’Hooge J, MacIsaac AI, Prior DL 2010. Left ventricular strain and strain rate: characterization of the effect of load in human subjects. European Journal of Echocardiography 11 283–289. (doi:10.1093/ejechocard/jep214)

    Article  Google Scholar 

  18. Hurlburt HM, Aurigemma GP, Hill JC, Narayanan A, Gaasch WH, Vinch CS, Meyer TE, Tighe DA 2007. Direct ultrasound measurement of longitudinal, circumferential, and radial strain using 2-dimensional strain imaging in normal adults. Echocardiography 24 723–731. (doi:10.1111/j.1540-8175.2007.00460.x)

    Article  Google Scholar 

  19. Becker M, Kramann R, Dohmen G, Luckhoff A, Autschbach R, Kelm M, Hoffmann R 2007. Impact of left ventricular loading conditions on myocardial deformation parameters: analysis of early and late changes of myocardial deformation parameters after aortic valve replacement. Journal of the American Society of Echocardiography 20 681–689. (doi:10.1016/j.echo.2006.11.003)

    Article  Google Scholar 

  20. Rost C, Korder S, Wasmeier G, Wu M, Klinghammer L, Flachskampf FA, Daniel WG, Voigt JU 2010. Sequential changes in myocardial function after valve replacement for aortic stenosis by speckle tracking echocardiography. European Journal of Echocardiography 11 584–589. (doi:10.1093/ejechocard/jeq017)

    Article  Google Scholar 

  21. Aurigemma GP, Silver KH, Priest MA, Gaasch WH 1995. Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy. Journal of the American College of Cardiology 26 195–202. (doi:10.1016/0735-1097(95)00153-Q)

    Article  CAS  Google Scholar 

  22. Yingchoncharoen T, Agarwal S, Popovic ZB, Marwick TH 2013. Normal ranges of left ventricular strain: a meta-analysis. Journal of the American Society of Echocardiography 26 185–191. (doi:10.1016/j.echo.2012.10.008)

    Article  Google Scholar 

  23. Koyama J, Falk RH 2010. Prognostic significance of strain Doppler imaging in light-chain amyloidosis. JACC: Cardiovascular Imaging 3 333–342. (doi:10.1016/j.jcmg.2009.11.013)

    PubMed  Google Scholar 

  24. Attias D, Macron L, Dreyfus J, Monin JL, Brochet E, Lepage L, Hekimian G, Iung B, Vahanian A, Messika-Zeitoun D 2013. Relationship between longitudinal strain and symptomatic status in aortic stenosis. Journal of the American Society of Echocardiography 26 868–874. (doi:10.1016/j.echo.2013.05.004)

    Article  Google Scholar 

  25. Balzer P, Furber A, Delepine S, Rouleau F, Lethimonnier F, Morel O, Tadei A, Jallet P, Geslin P, le Jeune JJ 1999. Regional assessment of wall curvature and wall stress in left ventricle with magnetic resonance imaging. American Journal of Physiology 277 H901–H910.

    CAS  Google Scholar 

  26. Lafitte S, Perlant M, Reant P, Serri K, Douard H, DeMaria A, Roudaut R 2009. Impact of impaired myocardial deformations on exercise tolerance and prognosis in patients with asymptomatic aortic stenosis. European Journal of Echocardiography 10 414–419. (doi:10.1093/ejechocard/jen299)

    Article  Google Scholar 

  27. Narayanan A, Aurigemma GP, Chinali M, Hill JC, Meyer TE, Tighe DA 2009. Cardiac mechanics in mild hypertensive heart disease: a speckle-strain imaging study. Circulation Cardiovascular Imaging 2 382–390. (doi:10.1161/CIRCIMAGING.108.811620)

    Article  Google Scholar 

  28. Sengupta PP, Khandheria BK, Korinek J, Wang J, Jahangir A, Seward JB, Belohlavek M 2006. Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening. Journal of the American College of Cardiology 47 163–172. (doi:10.1016/j.jacc.2005.08.073)

    Article  Google Scholar 

Download references

Funding

This project was funded by the Indiana University School of Medicine Strategic Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Upasana Jarori MD or Stephen G. Sawada MD.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhea, I.B., Rehman, S., Jarori, U. et al. Prognostic utility of blood pressure-adjusted global and basal systolic longitudinal strain. Echo Res Pract 3, 17–24 (2016). https://doi.org/10.1530/ERP-15-0037

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-15-0037

Key Words