Skip to main content

Global longitudinal strain: a useful everyday measurement?

Abstract

Herceptin (Trastuzumab) is a widely used and effective drug for the treatment of Her2+ breast cancer but its cardiotoxic side effects require regular monitoring by echocardiography. A 10% reduction in left ventricular ejection fraction can lead to suspension of treatment and therefore has significant implications for patient prognosis in terms of cardiac and cancer outcomes. Assessment of LV function by conventional 2D biplane method of discs (2DEF) has limitations in accuracy and reproducibility. Global longitudinal strain (GLS) is becoming more widely available and user friendly. It has been shown to demonstrate myocardial damage earlier in treatment than 2DEF, allowing the option of pharmacological intervention at a pre-clinical stage and preventing the interruption of Herceptin. This study compares the reproducibility of GLS with that of 2DEF in a routine clinical environment. Fifty echocardiograms performed on female patients undergoing Herceptin treatment were used to measure both 2DEF and GLS within the recommended standard appointment time of 40 min. The data were re-measured (blind) by the same operator a minimum of 14 days later to determine intra-operator variation. These data were also measured by a second operator (blind), to assess inter-operator variation. Analysis by direct comparison, intra-class correlation (ICC), coefficient of variation (CV) and Bland–Altman plots demonstrated that GLS is a more reproducible measurement than 2DEF. This is important to prevent clinical decisions being erroneously based on variation in operator measurement. The investigation also shows that with advances in machine software this is a practical addition to routine assessment rather than merely a research tool.

References

  1. Hudis C 2007 Trastuzumab–mechanism of action and use in clinical practice. New England Journal of Medicine 357 39–51. ((doi:10.1056/NEJMra043186)

    Article  CAS  Google Scholar 

  2. Boekhout AH, Beijnen JH, & Schellens JH 2011 Trastuzumab. Oncologist 16 800–810. ((doi:10.1634/theoncologist.2010-0035)

    Article  CAS  Google Scholar 

  3. Onitilo AA, Engel JM, & Stankowski RV 2014 Cardiovascular toxicity associated with adjuvant trastuzumab therapy: prevalence, patient characteristics, and risk factors. Theraputic Advances in Drug Safety 5 154–166. ((doi:10.1177/2042098614529603)

    Article  Google Scholar 

  4. Wood PW, Choy JB, Nanda NC, & Becher H 2014 Left ventricular ejection fraction and volumes: it depends on the imaging method. Echocardiography 31 87–100. ((doi:10.1111/echo.12331)

    Article  Google Scholar 

  5. Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popovic ZB, & Marwick TH 2013 Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes application to patients undergoing cancer chemotherapy. Journal of the American College of Cardiology 61 77–84. ((doi:10.1016/j.jacc.2012.09.035)

    Article  Google Scholar 

  6. Mor-Avi V, & Lang RM 2013 Is echocardiography reliable for monitoring the adverse cardiac effects of chemotherapy? Journal of the American College of Cardiology 61 85–87. ((doi:10.1016/j.jacc.2012.10.006)

    Article  Google Scholar 

  7. Dorosz JL, Lezotte DC, Weitzenkamp DA, Allen LA, & Salcedo EE 2012 Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. Journal of the American College of Cardiology 59 1799–1808. ((doi:10.1016/j.jacc.2012.01.037)

    Article  Google Scholar 

  8. Plana JC, Galderisi M, Barac A, Ewer MS, Ky B, Scherrer-Crosbie M, Ganame J, Sebag IA, Agler DA, Badano LP, et al. 2014 Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal: Cardiovascular Imaging 15 1063–1093. ((doi:10.1093/ehjci/jeu192)

    PubMed  PubMed Central  Google Scholar 

  9. Otterstad J, Froeland G, Sutton J, & Holme I 1997 Accuracy and reproducibility of biplane two-dimensional echocardiographic measurements of left ventricular dimensions and function. European Heart Journal 18 507–513. ((doi:10.1093/oxfordjournals.eurheartj.a015273)

    Article  CAS  Google Scholar 

  10. Fallah-Rad N, Walker JR, Wassef A, Lytwyn M, Bohonis S, Fang TL, Tian GH, Kirkpatrick I, Singal PK, Krahn M, et al. 2011 The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. Journal of the American College of Cardiology 7 2263–2270. ((doi:10.1016/j.jacc.2010.11.063)

    Article  Google Scholar 

  11. Negishi K, Negishi T, Haluska BA, Hare JL, Plana JC, & Marwick TH 2014 Use of speckle strain to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection. European Heart Journal of Cardiovascular Imaging 15 324–331. ((doi:10.1093/ehjci/jet159)

    Article  Google Scholar 

  12. Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, & Marwick TH 2013 Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. Journal of the American Society of Echocardiography 26 493–498. ((doi:10.1016/j.echo.2013.02.008)

    Article  Google Scholar 

  13. Belghiti H, Brette S, Lafitte S, Reant P, Picard F, Serri K, Lafitte M, Courregelongue M, Dos Santos P, Douard H, et al. 2008 Automated function imaging: a new operator-independent strain method for assessing left ventricular function. Archives of Cardiovascular Diseases 101 163–169. ((doi:10.1016/S1875-2136(08)71798-4)

    Article  Google Scholar 

  14. Costa SP, Beaver TA, Roller JL, Vanichakum P, Magnus PC, & Palak RT 2014 Quantification of the variability associated with repeat measurements of left ventricular two-dimensional global longitudinal strain in a real-world setting. Journal of the American Society of Echocardiography 27 50–54. ((doi:10.1016/j.echo.2013.08.021)

    Article  Google Scholar 

  15. Farsalinos EK, Daraban AM, Unlu S, Thomas JD, Badano LP, & Voigt J 2015 Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE inter-vendor comparison study. Journal of the American Society of Echocardiography 28 1171–1181. ((doi:10.1016/j.echo.2015.06.011)

    Article  Google Scholar 

  16. Dalen H, Thorstensen A, Aase SA, Ingul CB, Torp H, Vatten LJ, & Stoylen A 2010 Segmental and global longitudinal strain and strain rate based on echocardiography of 1266 healthy individuals: the HUNT study in Norway. European Journal of Echocardiography 11 176–183. ((doi:10.1093/ejechocard/jep194)

    Article  Google Scholar 

  17. Marwick TH, Leano RL, Brown J, Sun JP, Hoffmann R, Lysyansky P, Becker M, & Thomas JD 2009 Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. Journal of the American College of Cardiology 2 80–84. ((doi:10.1016/j.jcmg.2007.12.007)

    Article  Google Scholar 

  18. Takigiku K, Takeuchi M, Izumi C, Yuda S, Sakata K, Ohte N, Tanabe K, & Nakatani S 2012 Normal range of left ventricular 2-dimensional strain-Japanese ultrasound speckle tracking of the left ventricle (JUSTICE) study. Circulation Journal 76 2623–2632. ((doi:10.1253/circj.CJ-12-0264)

    Article  Google Scholar 

  19. Yingchoncharoen Y, Agarwal S, & Marwick TH 2013 Normal ranges of left ventricular global longitudinal strain: a meta-analysis. Journal of the American Society of Echocardiography 26 185–191. ((doi:10.1016/j.echo.2012.10.008)

    Article  Google Scholar 

  20. Kocabay G, Muraru D, Peluso D, Cucchini U, Mihaila S, Padayattil-Jose S, Gentian D, Iliceto S, Vinereanu D, & Badano LP 2014 Normal left ventricular mechanics by two-dimensional speckle-tracking echocardiography. Reference values in healthy adults. Revista Espanola de Cardiologia 67 651–658. ((doi:10.1016/j.recesp.2013.12.011)

    Article  Google Scholar 

  21. Sheppard RJ, Berger J, & Sebag IA 2013 Cardiotoxicity of cancer therapeutics: current issues in screening, prevention, and therapy. Frontiers in Pharmacology 4 19. ((doi:10.3389/fphar.2013.00019)

    Article  Google Scholar 

  22. Kalam KM, & Marwick TH 2013 Role of cardioprotective therapy for the prevention of cardiotoxicity with chemotherapy: a systematic review and meta-analysis. European Journal of Cancer 49 2900–2909. ((doi:10.1016/j.ejca.2013.04.030)

    Article  CAS  Google Scholar 

  23. Saito M, Okayama H, Yoshi T, Higashi H, Morioka H, Hiasa G, Sumemoto T, Inaba S, Nishimura K, Inoue K, et al. 2012 Clinical significance of global two-dimensional strain as a surrogate parameter of myocardial fibrosis and cardiac events in patients with hypertrophic cardiomyopathy. European Heart Journal of Cardiovascular Imaging 13 617–623. ((doi:10.1093/ejechocard/jer318)

    Article  Google Scholar 

  24. Ozawa K, Funabashi N, Takaoka H, Kamata T, Kanaeda K, Saito M, Nomura F, & Kobayashi Y 2015 Characteristic myocardial strain identified in hypertrophic cardiomyopathy subjects with preserved left ventricular ejection fraction using a novel multi-layer transthoracic echocardiography technique. International Journal of Cardiology 184 237–243. ((doi:10.1016/j.ijcard.2015.01.070)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the staff of the Cardiac Investigations Unit, James Cook University Hospital, for their support in accommodating this study, and the Research and Development department for their support and guidance.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. King.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, A., Thambyrajah, J., Leng, E. et al. Global longitudinal strain: a useful everyday measurement?. Echo Res Pract 3, 85–93 (2016). https://doi.org/10.1530/ERP-16-0022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-16-0022

Key Words