Skip to main content

Automated left heart chamber volumetric assessment using three-dimensional echocardiography in Chinese adolescents

Abstract

Background: Several studies have reported the accuracy and reproducibility of HeartModel for automated determination of three-dimensional echocardiography (3DE)-derived left heart volumes and left ventricular (LV) ejection fraction (LVEF) in adult patients. However, it remains unclear whether this automated adaptive analytics algorithm, derived from a ‘training’ population, can encompass adequate echo images in Chinese adolescents.

Objectives: The aim of our study was to explore the accuracy of HeartModel in adolescents compared with expert manual three-dimensional (3D) echocardiography.

Methods: Fifty-three Chinese adolescent subjects with or without heart disease underwent 3D echocardiographic imaging with an EPIQ system (Philips). 3D cardiac volumes and LVEF obtained with the automated HeartModel program were compared with manual 3D echocardiographic measurements by an experienced echocardiographer.

Results: There was strong correlation between HeartModel and expert manual 3DE measurements (r = 0.875–0.965, all P < 0.001). Automated LV and left atrial (LA) volumes were slightly overestimated when compared to expert manual measurements, while LVEF showed no significant differences from the manual method. Importantly, the intra- and inter-observer variability of automated 3D echocardiographic model was relatively low (<1%), surpassing the manual approach (3.5–17.4%), yet requiring significantly less analyzing time (20 ± 7 vs 177 ± 30 s, P < 0.001).

Conclusion: Simultaneous quantification of left heart volumes and LVEF with the automated HeartModel program is rapid, accurate and reproducible in Chinese adolescent cohort. Therefore, it has a potential to bring 3D echocardiographic assessment of left heart chamber volumes and function into busy pediatric practice.

References

  1. Gutgesell HP 1985 Echocardiographic assessment of cardiac function in infants and children. Journal of the American College of Cardiology 5 95S–103S. (doi:10.1016/S0735-1097(85)80150-9)

    Article  CAS  Google Scholar 

  2. Lang RM, Mor-Avi V, Sugeng L, Nieman PS, Sahn DJ 2006 Three-dimensional echocardiography: the benefits of the additional dimension. Journal of the American College of Cardiology 48 2053–2069. (doi:10.1016/j.jacc.2006.07.047)

    Article  Google Scholar 

  3. Monaghan MJ 2006 Role of real time 3D echocardiography in evaluating the left ventricle. Heart 92 131–136. (doi:10.1136/hrt.2004.058388)

    Article  Google Scholar 

  4. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. 2015 Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography 28 1–39. (doi:10.1016/j.echo.2014.10.003)

    Article  Google Scholar 

  5. Mor-Avi V, Jenkins C, Kühl HP, Nesser HJ, Marwick T, Franke A, Ebner C, Freed BH, Steringer-Mascherbauer R, Pollard H, et al. 2008 Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. JACC: Cardiovascular Imaging 1 413–423. (doi:10.1016/j.jcmg.2008.02.009)

    PubMed  Google Scholar 

  6. Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R, Schmidt F, Galuschky C, Schummers G, Lang RM, et al. 2006 Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 114 654–661. (doi:10.1161/CIRCULATIONAHA.106.626143)

    Article  Google Scholar 

  7. Mor-Avi V, Yodwut C, Jenkins C, Kühl H, Nesser HJ, Marwick TH, Franke A, Weinert L, Niel J, Steringer-Mascherbauer R, et al. 2012 Real-time 3D echocardiographic quantification of left atrial volume: multicenter study for validation with CMR. JACC: Cardiovascular Imaging 5 769–777. (doi:10.1016/j.jcmg.2012.05.011)

    PubMed  Google Scholar 

  8. Abdel Aziz FM, Abdel Dayem SM, Ismail RI, Hassan H, Fattouh AM 2016 Assessment of left ventricular volume and function using real-time 3D echocardiography versus angiocardiography in children with tetralogy of fallot. Journal of Cardiovascular Ultrasound 24 123–127. (doi:10.4250/jcu.2016.24.2.123)

    Article  Google Scholar 

  9. Rigolin VH 2016 Automated cardiac volumetric analysis: one step closer to incorporating 3D TTE into routine daily workflow. JACC: Cardiovascular Imaging 9 783–784. (doi:10.1016/j.jcmg.2016.01.023)

    PubMed  Google Scholar 

  10. Zhang QB, Sun JP, Gao RF, Lee AP, Feng YL, Liu XR, Sheng W, Liu F, Yang XS, Fang F, et al. 2013 Feasibility of single-beat full-volume capture real-time three-dimensional echocardiography for quantification of right ventricular volume: validation by cardiac magnetic resonance imaging. International Journal of Cardiology 168 3991–3995. (doi:10.1016/j.ijcard.2013.06.088)

    Article  Google Scholar 

  11. Muraru D, Badano LP, Ermacora D, Piccoli G, Iliceto S 2012 Sources of variation and bias in assessing left ventricular volumes and dyssynchrony using three-dimensional echocardiography. International Journal of Cardiovascular Imaging 28 1357–1368. (doi:10.1007/s10554-011-9985-0)

    Article  Google Scholar 

  12. Tsang W, Kenny C, Adhya S, Kapetanakis S, Weinert L, Lang RM, Monaghan M 2013 Interinstitutional measurements of left ventricular volumes, speckle-tracking strain, and dyssynchrony using three-dimensional echocardiography. Journal of the American Society of Echocardiography 26 1253–1257. (doi:10.1016/j.echo.2013.07.023)

    Article  Google Scholar 

  13. Otani K, Nakazono A, Salgo IS, Lang RM, Takeuchi M 2016 Three-dimensional echocardiographic assessment of left heart chamber size and function with fully automated quantification software in patients with atrial fibrillation. Journal of the American Society of Echocardiography 29 955–965. (doi:10.1016/j.echo.2016.06.010)

    Article  Google Scholar 

  14. Tsang W, Salgo IS, Medvedofsky D, Takeuchi M, Prater D, Weinert L, Yamat M, Mor-Avi V, Patel AR, Lang RM 2016 Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC: Cardiovascular Imaging 9 769–782. (doi:10.1016/j.jcmg.2015.12.020)

    PubMed  Google Scholar 

  15. Spitzer E, Ren B, Soliman OI, Zijlstra F, Van Mieghem NM, Geleijnse ML 2017 Accuracy of an automated transthoracic echocardiographic tool for 3D assessment of left heart chamber volumes. Echocardiography 34 199–209. (doi:10.1111/echo.13436)

    Article  Google Scholar 

  16. Chahal NS, Lim TK, Jain P, Chambers JC, Kooner JS, Senior R 2010 Ethnicity-related differences in left ventricular function, structure and geometry: a population study of UK Indian Asian and European white subjects. Heart 96 466–471. (doi:10.1136/hrt.2009.173153)

    Article  Google Scholar 

  17. Yip GW, Li AM, So HK, Choi KC, Leung LC, Fong NC, Lee KW, Li SP, Wong SN, Sung RY 2014 Oscillometric 24-h ambulatory blood pressure reference values in Hong Kong Chinese children and adolescents. Journal of Hypertension 32 606–619. (doi:10.1097/HJH.0000000000000062)

    Article  CAS  Google Scholar 

  18. Wang TJ, Evans JC, Benjamin EJ, Levy D, LeRoy EC, Vasan RS 2003 Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation 108 977–982. (doi:10.1161/01.CIR.0000085166.44904.79)

    Article  Google Scholar 

  19. Bonow RO, Carabello BA, Chatterjee K, de Leon AC Jr, Faxon DP, Freed MD, Gaasch WH, Lytle BW, Nishimura RA, O’Gara PT, et al. 2008 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Journal of the American College of Cardiology 52 e1–e142. (doi:10.1016/j.jacc.2008.05.007)

    Article  Google Scholar 

  20. Mor-Avi V, Yodwut C, Jenkins C, Kühl H, Nesser HJ, Marwick TH, Franke A, Weinert L, Niel J, Steringer-Mascherbauer R, et al. 2012 Real-time 3D echocardiographic quantification of left atrial volume: multicenter study for validation with CMR. JACC: Cardiovascular Imaging 5 769–777. (doi:10.1016/j.jcmg.2012.05.011)

    PubMed  Google Scholar 

  21. Poutanen T, Ikonen A, Jokinen E, Vainio P, Tikanoja T 2001 Transthoracic three-dimensional echocardiography is as good as magnetic resonance imaging in measuring dynamic changes in left ventricular volume during the heart cycle in children. European Journal of Echocardiography 2 31–39. (doi:10.1053/euje.2000.0054)

    Article  CAS  Google Scholar 

  22. Friedberg MK, Su X, Tworetzky W, Soriano BD, Powell AJ, Marx GR 2010 Validation of 3D echocardiographic assessment of left ventricular volumes, mass, and ejection fraction in neonates and infants with congenital heart disease: a comparison study with cardiac MRI. Circulation: Cardiovascular Imaging 3 735–742. (doi:10.1161/CIRCIMAGING.109.928663)

    Google Scholar 

  23. Dorosz JL, Lezotte DC, Weitzenkamp DA, Allen LA, Salcedo EE 2012 Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. Journal of the American College of Cardiology 59 1799–1808. (doi:10.1016/j.jacc.2012.01.037)

    Article  Google Scholar 

  24. Kishi S, Reis JP, Venkatesh BA, Gidding SS, Armstrong AC, Jacobs DR Jr, Sidney S, Wu CO, Cook NL, Lewis CE, et al. 2015 Race-ethnic and sex differences in left ventricular structure and function: the Coronary Artery Risk Development in Young Adults (CARDIA) study. Journal of the American Heart Association 4 e001264. (doi:10.1161/JAHA.114.001264)

    Article  Google Scholar 

  25. Patel DA, Lavie CJ, Milani RV, Ventura HO 2011 Left atrial volume index predictive of mortality independent of left ventricular geometry in a large clinical cohort with preserved ejection fraction. Mayo Clinic Proceedings 86 730–737. (doi:10.4065/mcp.2010.0682)

    Article  Google Scholar 

  26. Yang WI, Shim CY, Kim YJ, Kim SA, Rhee SJ, Choi EY, Choi D, Jang Y, Chung N, Cho SY, et al. 2009 Left atrial volume index: a predictor of adverse outcome in patients with hypertrophic cardiomyopathy. Journal of the American Society of Echocardiography 22 1338–1343. (doi:10.1016/j.echo.2009.09.016)

    Article  Google Scholar 

  27. Soliman OI, Kirschbaum SW, van Dalen BM, van der Zwaan HB, MahdavianDelavary B, Vletter WB, van Geuns RJ, Ten Cate FJ, Geleijnse ML 2008 Accuracy and reproducibility of quantitation of left ventricular function by real-time three-dimensional echocardiography versus cardiac magnetic resonance. American Journal of Cardiology 102 778–783. (doi:10.1016/j.amjcard.2008.04.062)

    Article  Google Scholar 

  28. Wood PW, Choy JB, Nanda NC, Becher H 2014 Left ventricular ejection fraction and volumes: it depends on the imaging method. Echocardiography 31 87–100. (doi:10.1111/echo.12331)

    Article  Google Scholar 

  29. Jacobs LD, Salgo IS, Goonewardena S, Weinert L, Coon P, Bardo D, Gerard O, Allain P, Zamorano JL, de Isla LP, et al. 2006 Rapid online quantification of left ventricular volume from real-time three-dimensional echocardiographic data. European Heart Journal 27 460–468. (doi:10.1093/eurheartj/ehi666)

    Article  Google Scholar 

  30. Soliman OI, Krenning BJ, Geleijnse ML, Nemes A, van Geuns RJ, Baks T, Anwar AM, Galema TW, Vletter WB, ten Cate FJ 2007 A comparison between QLAB and TomTec full volume reconstruction for real time three-dimensional echocardiographic quantification of left ventricular volumes. Echocardiography 24 967–974. (doi:10.1111/j.1540-8175.2007.00502.x)

    Article  Google Scholar 

  31. Artang R, Migrino RQ, Harmann L, Bowers M, Woods TD 2009 Left atrial volume measurement with automated border detection by 3-dimensional echocardiography: comparison with Magnetic Resonance Imaging. Cardiovascular Ultrasound 7 16. (doi:10.1186/1476-7120-7-16)

    Article  Google Scholar 

  32. Shimada YJ, Shiota T 2012 Underestimation of left atrial volume by three-dimensional echocardiography validated by magnetic resonance imaging: a meta-analysis and investigation of the source of bias. Echocardiography 29 385–390. (doi:10.1111/j.1540-8175.2011.01593.x)

    Article  Google Scholar 

  33. Thavendiranathan P, Liu S, Verhaert D, Calleja A, Nitinunu A, Van Houten T, De Michelis N, Simonetti O, Rajagopalan S, Ryan T, et al. 2012 Feasibility, accuracy, and reproducibility of real-time full-volume 3D transthoracic echocardiography to measure LV volumes and systolic function: a fully automated endocardial contouring algorithm in sinus rhythm and atrial fibrillation. JACC: Cardiovascular Imaging 5 239–251. (doi:10.1016/j.jcmg.2011.12.012)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Pui-Wai Lee MD.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, XX., Fang, F., So, HK. et al. Automated left heart chamber volumetric assessment using three-dimensional echocardiography in Chinese adolescents. Echo Res Pract 4, 53–61 (2017). https://doi.org/10.1530/ERP-17-0028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-17-0028

Key Words