- Case Report
- Open access
- Published:
Ischaemia as a cause of LVOT gradient reversal in HCM
Echo Research & Practice volume 4, pages K31–K36 (2017)
Summary
We present the case of a previously fit 84-year-old female with long-standing systemic hypertension and the echo phenotype of hypertrophic cardiomyopathy (HCM)–asymmetrical septal hypertrophy, significant resting left ventricular (LV) outflow obstruction and mitral regurgitation (MR) secondary to systolic anterior motion (SAM) of the mitral valve. Valsalva provocation caused an increase in LVOT dynamic gradient and MR severity. The patient presented with a progressive decrease in exercise capacity along with chest pain relieved by rest or sublingual GTN. Exercise stress echo demonstrated a paradoxical response with reduction of both LVOT gradient and severity of MR. There was evidence of inducible regional wall motion abnormalities associated with no change in LV cavity size. Coronary angiogram revealed significant triple vessel disease.
References
Smith N, Steeds R, Masani N, Sandoval J, Wharton G, Allen J, Chambers J, Jones R, Lloyd G, Rana B, et al. 2015 A systematic approach to echocardiography in hypertrophic cardiomyopathy: a guideline protocol from the British Society of Echocardiography. Echo Research and Practice 2 G1–G7. (doi:10.1530/ERP-14-0115)
Dunn FG, Chandraratna P, deCarvalho JG, Basta LL, Frohlich ED 1977 Pathophysiologic assessment of hypertensive heart disease with echocardiography. American Journal of Cardiology 39 789–795. (doi:10.1016/s0002-9149(77)80028-3)
Baltabaeva A, Marciniak M, Bijnens B, Moggridge J, He FJ, Antonios TF, MacGregor GA, Sutherland GR 2008 Regional left ventricular deformation and geometry analysis provides insights in myocardial remodeling in mild to moderate hypertension. European Journal of Echocardiography 9 501–508. (doi:10.1016/j.euje.2007.08.004)
Maron MS, Olivotto I, Maron BJ 2009 The case for myocardial ischemia in hypertrophic cardiomyopathy. Journal of the American College of Cardiology 54 866–875. (doi:10.1016/j.jacc.2009.04.072)
Raphael CE, Cooper R, Parker KH, Collinson J, Vassiliou V, Pennell DJ, de Silva R, Hsu LY, Greve AM, Nijjer S, et al. 2016 Mechanisms of myocardial ischemia in hypertrophic cardiomyopathy, insights from wave intensity analysis and magnetic resonance. Journal of the American College of Cardiology 68 1651–1660. (doi:10.1016/j.jacc.2016.07.751)
Varnava AM, Elliott PM, Sharma S, McKenna WJ, Davies MJ 2000 Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart 84 476–482. (doi:10.1136/heart.84.5.476)
Bensaid J 1979 Idiopathic hypertrophic subaortic stenosis and associated coronary artery disease: clinical, hemodynamic, and therapeutic features from a review of 57 cases of the literature. Angiology 30 585–593. (doi:10.1177/000331977903000902)
Lardani H, Serrano JA, Villamil RJ 1978 Hemodynamics and coronary angiography in idiopathic hypertrophic subaortic stenosis. American Journal of Cardiology 41 476–481. (doi:10.1016/0002-9149(78)90002-4)
Lafitte S, Reant P, Touche C 2013 Paradoxical response to exercise in asymptomatic hypertrophic cardiomyopathy: a new description of outflow tract obstruction dynamics. Journal of the American College of Cardiology 62 842–850. (doi:10.1016/j.jacc.2013.06.007)
Soraja P, Ommen SR, Nishimura RA, Gersh BJ, Berger PB, Jamil Tajik A 2003 Adverse prognosis of patients with hypertrophic cardiomyopathy how have epicardial coronary artery disease. Circulation 108 2342–2348. (doi:10.1161/01.cir.0000097110.55312.bf)
Author information
Authors and Affiliations
Corresponding author
Additional information
Author contribution statement Dr Aigul Baltabaeva reviewed stress echo test and referred patient for MRI and coronary angiography. We have permission for publication from the physician who is responsible for the patient.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://doi.org/creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Demetrescu, C., Haley, S.R. & Baltabaeva, A. Ischaemia as a cause of LVOT gradient reversal in HCM. Echo Res Pract 4, K31–K36 (2017). https://doi.org/10.1530/ERP-17-0030
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1530/ERP-17-0030