Skip to main content

Echo and heart failure: when do people need an echo, and when do they need natriuretic peptides?

Abstract

Heart failure (HF) is a threat to public health. Heterogeneities in aetiology and phenotype complicate the diagnosis and management of HF. This is especially true when considering HF with preserved ejection fraction (HFpEF), which makes up 50% of HF cases. Natriuretic peptides may aid in establishing a working diagnosis in patients suspected of HF, but echocardiography remains the optimal choice for diagnosing HF. Echocardiography provides important prognostic information in both HF with reduced ejection fraction (HFrEF) and HFpEF. Traditionally, emphasis has been put on the left ventricular ejection fraction (LVEF). LVEF is useful for both diagnosis and prognosis in HFrEF. However, echocardiography offers more than this single parameter of systolic function, and for optimal risk assessment in HFrEF, an echocardiogram evaluating systolic, diastolic, left atrial and right ventricular function is beneficial. In this assessment echocardiographic modalities such as global longitudinal strain (GLS) by 2D speckle-tracking may be useful. LVEF offers little value in HFpEF and is neither helpful for diagnosis nor prognosis. Diastolic function quantified by E/e′ and systolic function determined by GLS offer prognostic insight in HFpEF. In HFpEF, other parameters of cardiac performance such as left atrial and right ventricular function evaluated by echocardiography also contribute with prognostic information. Hence, it is important to consider the entire echocardiogram and not focus solely on systolic function. Future research should focus on combining echocardiographic parameters into risk prediction models to adopt a more personalized approach to prognosis instead of identifying yet another echocardiographic biomarker.

References

  1. Roger VL. Epidemiology of heart failure. Circulation Research 2013 113 646–659. (https://doi.org/10.1161/CIRCRESAHA.113.300268)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, Ikonomidis JS, Khavjou O, Konstam MA, Maddox TM, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circulation: Heart Failure 2013 6 606–619. (https://doi.org/10.1161/HHF.0b013e318291329a)

    CAS  Google Scholar 

  3. Bhatia RS, Tu JV, Lee DS, Austin PC, Fang J, Haouzi A, Gong Y, Liu PP. Outcome of heart failure with preserved ejection fraction in a population-based study. New England Journal of Medicine 2006 355 260–269. (https://doi.org/10.1056/NEJMoa051530)

    CAS  Google Scholar 

  4. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola VP, Jankowska EA, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal 2016 37 2129–2200. (https://doi.org/10.1093/eurheartj/ehw128)

    PubMed  Google Scholar 

  5. Tang WHW, Francis GS, Morrow DA, Newby LK, Cannon CP, Jesse RL, Storrow AB, Christenson RH, Apple FS, Ravkilde J, et al. National Academy of Clinical Biochemistry Laboratory Medicine practice guidelines: clinical utilization of cardiac biomarker testing in heart failure. Circulation 2007 116 e99–e109. (https://doi.org/10.1161/CIRCULATIONAHA.107.185267)

    CAS  PubMed  Google Scholar 

  6. Davie AP, Francis CM, Caruana L, Sutherland GR, McMurray JJ. Assessing diagnosis in heart failure: which features are any use? Quarterly Journal of Medicine 1997 90 335–339. (https://doi.org/10.1093/qjmed/90.5.335)

    CAS  Google Scholar 

  7. Hawkins NM, Petrie MC, Jhund PS, Chalmers GW, Dunn FG, McMurray JJV. Heart failure and chronic obstructive pulmonary disease: diagnostic pitfalls and epidemiology. European Journal of Heart Failure 2009 11 130–139. (https://doi.org/10.1093/eurjhf/hfn013)

    PubMed  PubMed Central  Google Scholar 

  8. Yamamoto K, Burnett JC, Bermudez EA, Jougasaki M, Bailey KR, Redfield MM. Clinical criteria and biochemical markers for the detection of systolic dysfunction. Journal of Cardiac Failure 2000 6 194–200. (https://doi.org/10.1054/jcaf.2000.9676)

    CAS  PubMed  Google Scholar 

  9. Zaphiriou A, Robb S, Murray-Thomas T, Mendez G, Fox K, McDonagh T, Hardman SM, Dargie HJ, Cowie MR. The diagnostic accuracy of plasma BNP and NTproBNP in patients referred from primary care with suspected heart failure: results of the UK natriuretic peptide study. European Journal of Heart Failure 2005 7 537–541. (https://doi.org/10.1016/j.ejheart.2005.01.022)

    CAS  PubMed  Google Scholar 

  10. Redfield MM, Rodeheffer RJ, Jacobsen SJ, Mahoney DW, Bailey KR, Burnett JC. Plasma brain natriuretic peptide concentration: impact of age and gender. Journal of the American College of Cardiology 2002 40 976–982. (https://doi.org/10.1016/S0735-1097(02)02059-4)

    CAS  PubMed  Google Scholar 

  11. Hildebrandt P, Collinson PO, Doughty RN, Fuat A, Gaze DC, Gustafsson F, Januzzi J, Rosenberg J, Senior R, Richards M. Age-dependent values of N-terminal pro-B-type natriuretic peptide are superior to a single cut-point for ruling out suspected systolic dysfunction in primary care. European Heart Journal 2010 31 1881–1889. (https://doi.org/10.1093/eurheartj/ehq163)

    CAS  PubMed  Google Scholar 

  12. Sharma V, Stewart RA, Lee M, Gabriel R, Van Pelt N, Newby DE, Kerr AJ. Plasma brain natriuretic peptide concentrations in patients with valvular heart disease. Open Heart 2016 3 e000184. (https://doi.org/10.1136/openhrt-2014-000184)

    PubMed  PubMed Central  Google Scholar 

  13. Kitzman DW, Little WC, Brubaker PH, Anderson RT, Hundley WG, Marburger CT, Brosnihan B, Morgan TM, Stewart KP. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA 2002 288 2144–2150. (https://doi.org/10.1001/jama.288.17.2144)

    PubMed  Google Scholar 

  14. Maeder MT, Thompson BR, H-P Brunner-La Rocca, Kaye DM. Hemodynamic basis of exercise limitation in patients with heart failure and normal ejection fraction. Journal of the American College of Cardiology 2010 56 855–863. (https://doi.org/10.1016/j.jacc.2010.04.040)

    PubMed  Google Scholar 

  15. Maeder MT, Mariani JA, Kaye DM. Hemodynamic determinants of myocardial B-type natriuretic peptide release: relative contributions of systolic and diastolic wall stress. Hypertension 2010 56 682–689. (https://doi.org/10.1161/HYPERTENSIONAHA.110.156547)

    CAS  PubMed  Google Scholar 

  16. Madamanchi C, Alhosaini H, Sumida A, Runge MS. Obesity and natriuretic peptides, BNP and NT-proBNP: mechanisms and diagnostic implications for heart failure. International Journal of Cardiology 2014 176 611–617. (https://doi.org/10.1016/j.ijcard.2014.08.007)

    PubMed  Google Scholar 

  17. Horwich TB, Hamilton MA, Fonarow GC. B-type natriuretic peptide levels in obese patients with advanced heart failure. Journal of the American College of Cardiology 2006 47 85–90. (https://doi.org/10.1016/j.jacc.2005.08.050)

    CAS  PubMed  Google Scholar 

  18. Mehra MR, Uber PA, Park MH, Scott RL, Ventura HO, Harris BC, Frohlich ED. Obesity and suppressed B-type natriuretic peptide levels in heart failure. Journal of the American College of Cardiology 2004 43 1590–1595. (https://doi.org/10.1016/j.jacc.2003.10.066)

    CAS  PubMed  Google Scholar 

  19. Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 2017 136 6–19. (https://doi.org/10.1161/CIRCULATIONAHA.116.026807)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Clerico A, Zaninotto M, Passino C, Plebani M. Obese phenotype and natriuretic peptides in patients with heart failure with preserved ejection fraction. Clinical Chemistry and Laboratory Medicine 2018 [epub]. (https://doi.org/10.1515/cclm-2017-0840)

    Google Scholar 

  21. Carbone S, Lavie CJ, Arena R. Obesity and heart failure: focus on the obesity paradox. Mayo Clinic Proceedings 2017 92 266–279. (https://doi.org/10.1016/j.mayocp.2016.11.001)

    PubMed  Google Scholar 

  22. Eaton CB, Pettinger M, Rossouw J, Martin LW, Foraker R, Quddus A, Liu S, Wampler NS, Hank Wu WC, Manson JE, et al. Risk factors for incident hospitalized heart failure with preserved versus reduced ejection fraction in a multiracial cohort of postmenopausal women. Circulation: Heart Failure 2016 9 e002883.

    Google Scholar 

  23. Maggioni AP, Anand I, Gottlieb SO, Latini R, Tognoni G, Cohn JN & Val-HeFT Investigators (Valsartan Heart Failure Trial). Effects of valsartan on morbidity and mortality in patients with heart failure not receiving angiotensin-converting enzyme inhibitors. Journal of the American College of Cardiology 2002 40 1414–1421. (https://doi.org/10.1016/S0735-1097(02)02304-5)

    CAS  PubMed  Google Scholar 

  24. Yoshimura M, Mizuno Y, Nakayama M, Sakamoto T, Sugiyama S, Kawano H, Soejima H, Hirai N, Saito Y, Nakao K, et al. B-type natriuretic peptide as a marker of the effects of enalapril in patients with heart failure. American Journal of Medicine 2002 112 716–720. (https://doi.org/10.1016/S0002-9343(02)01121-X)

    CAS  Google Scholar 

  25. Paterna S, Di Pasquale P, Parrinello G, Fornaciari E, Di Gaudio F, Fasullo S, Giammanco M, Sarullo FM, Licata G. Changes in brain natriuretic peptide levels and bioelectrical impedance measurements after treatment with high-dose furosemide and hypertonic saline solution versus high-dose furosemide alone in refractory congestive heart failure: a double-blind study. Journal of the American College of Cardiology 2005 45 1997–2003. (https://doi.org/10.1016/j.jacc.2005.01.059)

    CAS  PubMed  Google Scholar 

  26. Rousseau MF, Gurné O, Duprez D, Van Mieghem W, Robert A, Ahn S, Galanti L, Ketelslegers JM & Belgian RALES Investigators. Beneficial neurohormonal profile of spironolactone in severe congestive heart failure: results from the RALES neurohormonal substudy. Journal of the American College of Cardiology 2002 40 1596–1601. (https://doi.org/10.1016/S0735-1097(02)02382-3)

    CAS  PubMed  Google Scholar 

  27. Obokata M, Kane GC, Reddy YNV, Olson TP, Melenovsky V, Borlaug BA. Role of diastolic stress testing in the evaluation for heart failure with preserved ejection fraction clinical perspective: a Simultaneous Invasive-Echocardiographic Study. Circulation 2017 135 825–838. (https://doi.org/10.1161/CIRCULATIONAHA.116.024822)

    PubMed  Google Scholar 

  28. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography 2016 29 277–314. (https://doi.org/10.1016/j.echo.2016.01.011)

    PubMed  Google Scholar 

  29. Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B, Zile MR, Voors AA, Lefkowitz MP, Packer M, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. Journal of the American College of Cardiology 2014 63 447–456. (https://doi.org/10.1016/j.jacc.2013.09.052)

    PubMed  Google Scholar 

  30. Biering-Sørensen T, Santos M, Rivero J, McCullough SD, West E, Opotowsky AR, Waxman AB, Systrom DM, Shah AM. Left ventricular deformation at rest predicts exercise-induced elevation in pulmonary artery wedge pressure in patients with unexplained dyspnoea. European Journal of Heart Failure 2017 19 101–110.

    PubMed  Google Scholar 

  31. Lam Carolyn SP, Solomon Scott D. The middle child in heart failure: heart failure with mid‐range ejection fraction (40–50%). European Journal of Heart Failure 2014 16 1049–1055. (https://doi.org/10.1002/ejhf.159)

    PubMed  Google Scholar 

  32. Gottdiener JS, McClelland RL, Marshall R, Shemanski L, Furberg CD, Kitzman DW, Cushman M, Polak J, Gardin JM, Gersh BJ, et al. Outcome of congestive heart failure in elderly persons: influence of left ventricular systolic function. The Cardiovascular Health Study. Annals of Internal Medicine 2002 137 631–639. (https://doi.org/10.7326/0003-4819-137-8-200210150-00006)

    PubMed  Google Scholar 

  33. Hwang S-J, Melenovsky V, Borlaug BA. Implications of coronary artery disease in heart failure with preserved ejection fraction. Journal of the American College of Cardiology 2014 63 2817–2827. (https://doi.org/10.1016/j.jacc.2014.03.034)

    PubMed  Google Scholar 

  34. Tribouilloy C, Rusinaru D, Mahjoub H, Goissen T, Lévy F, Peltier M. Impact of echocardiography in patients hospitalized for heart failure: a prospective observational study. Archives of Cardiovascular Diseases 2008 101 465–473. (https://doi.org/10.1016/j.acvd.2008.06.012)

    PubMed  Google Scholar 

  35. Agha SA, Kalogeropoulos AP, Shih J, Georgiopoulou VV, Giamouzis G, Anarado P, Mangalat D, Hussain I, Book W, Laskar S, Smith AL, et al. Echocardiography and risk prediction in advanced heart failure: incremental value over clinical markers. Journal of Cardiac Failure 2009 15 586–592. (https://doi.org/10.1016/j.cardfail.2009.03.002)

    PubMed  Google Scholar 

  36. Folse R, Braunwald E. Determination of fraction of left ventricular volume ejected per beat and of ventricular end-diastolic and residual volumes. Experimental and clinical observations with a precordial dilution technic. Circulation 1962 25 674–685. (https://doi.org/10.1161/01.CIR.25.4.674)

    CAS  PubMed  Google Scholar 

  37. Curtis JP, Sokol SI, Wang Y, Rathore SS, Ko DT, Jadbabaie F, Portnay EL, Marshalko SJ, Radford MJ, Krumholz HM. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. Journal of the American College of Cardiology 2003 42 736–742. (https://doi.org/10.1016/S0735-1097(03)00789-7)

    PubMed  Google Scholar 

  38. Pocock SJ, Wang D, Pfeffer MA, Yusuf S, McMurray JJ, Swedberg KB, Ostergren J, Michelson EL, Pieper KS, Granger CB. Predictors of mortality and morbidity in patients with chronic heart failure. European Heart Journal 2006 27 65–75. (https://doi.org/10.1093/eurheartj/ehi555)

    PubMed  Google Scholar 

  39. Sengeløv M, Jørgensen PG, Jensen JS, Bruun NE, Olsen FJ, Fritz-Hansen T, Nochioka K, Biering-Sørensen T. Global longitudinal strain is a superior predictor of all-cause mortality in heart failure with reduced ejection fraction. JACC: Cardiovascular Imaging 2015 8 1351–1359. (https://doi.org/10.1016/j.jcmg.2015.07.013)

    PubMed  Google Scholar 

  40. Hasselberg NE, Haugaa KH, Sarvari SI, Gullestad L, Andreassen AK, Smiseth OA, Edvardsen T. Left ventricular global longitudinal strain is associated with exercise capacity in failing hearts with preserved and reduced ejection fraction. European Heart Journal: Cardiovascular Imaging 2015 16 217–224. (https://doi.org/10.1093/ehjci/jeu277)

    PubMed  Google Scholar 

  41. Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, Estes NA 3rd, Foster E, Greenberg H, Higgins SL, et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. New England Journal of Medicine 2009 361 1329–1338. (https://doi.org/10.1056/NEJMoa0906431)

    Google Scholar 

  42. Birnie DH, Tang AS. The problem of non-response to cardiac resynchronization therapy. Current Opinion in Cardiology 2006 21 20–26. (https://doi.org/10.1097/01.hco.0000198983.93755.99)

    PubMed  Google Scholar 

  43. Tracy CM, Epstein AE, Darbar D, DiMarco JP, Dunbar SB, Estes NA 3rd, Ferguson TB Jr, Hammill SC, Karasik PE, Link MS, et al. 2012 ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society (corrected). Circulation 2012 126 1784–1800. (https://doi.org/10.1161/CIR.0b013e3182618569)

    PubMed  Google Scholar 

  44. Risum N, Williams ES, Khouri MG, Jackson KP, Olsen NT, Jons C, Storm KS, Velazquez EJ, Kisslo J, Bruun NE, et al. Mechanical dyssynchrony evaluated by tissue Doppler cross-correlation analysis is associated with long-term survival in patients after cardiac resynchronization therapy. European Heart Journal 2013 34 48–56. (https://doi.org/10.1093/eurheartj/ehs035)

    PubMed  Google Scholar 

  45. Kosiuk J, Dinov B, Bollmann A, Koutalas E, Mussigbrodt A, Sommer P, Arya A, Richter S, Hindricks G, Breithardt OA. Association between ventricular arrhythmias and myocardial mechanical dispersion assessed by strain analysis in patients with nonischemic cardiomyopathy. Clinical Research in Cardiology 2015 104 1072–1077. (https://doi.org/10.1007/s00392-015-0875-7)

    CAS  PubMed  Google Scholar 

  46. Haugaa KH, Goebel B, Dahlslett T, Meyer K, Jung C, Lauten A, Figulla HR, Poerner TC, Edvardsen T. Risk assessment of ventricular arrhythmias in patients with nonischemic dilated cardiomyopathy by strain echocardiography. Journal of the American Society of Echocardiography 2012 25 667–673. (https://doi.org/10.1016/j.echo.2012.02.004)

    PubMed  Google Scholar 

  47. Witkowski FX, Leon LJ, Penkoske PA, Giles WR, Spano ML, Ditto WL, Winfree AT. Spatiotemporal evolution of ventricular fibrillation. Nature 1998 392 78. (https://doi.org/10.1038/32170)

    CAS  PubMed  Google Scholar 

  48. Biering-Sorensen T, Knappe D, Pouleur AC, Claggett B, Wang PJ, Moss AJ, Solomon SD, Kutyifa V. Regional longitudinal deformation improves prediction of ventricular tachyarrhythmias in patients with heart failure with reduced ejection fraction: a MADIT-CRT Substudy (Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy). Circulation: Cardiovascular Imaging 2017 10 e005096. (https://doi.org/10.1161/CIRCIMAGING.116.005096)

    Google Scholar 

  49. Biering-Sørensen T, Olsen FJ, Storm K, Fritz-Hansen T, Olsen NT, Jøns C, Vinther M, Søgaard P, Risum N. Prognostic value of tissue Doppler imaging for predicting ventricular arrhythmias and cardiovascular mortality in ischaemic cardiomyopathy. European Heart Journal: Cardiovascular Imaging 2016 17 722–731.

    PubMed  Google Scholar 

  50. Kotecha D, Mohamed M, Shantsila E, Popescu BA, Steeds RP. Is echocardiography valid and reproducible in patients with atrial fibrillation? A systematic review. EP Europace 2017 19 1427–1438. (https://doi.org/10.1093/europace/eux027)

    Google Scholar 

  51. Kotecha D, Piccini JP. Atrial fibrillation in heart failure: what should we do? European Heart Journal 2015 36 3250–3257.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Olsen FJ, Jørgensen PG, Dons M, Svendsen JH, Køber L, Jensen JS, Biering-Sørensen T. Echocardiographic quantification of systolic function during atrial fibrillation: probing the ‘ten heart cycles’ rule. Future Cardiology 2016 12 159–165. (https://doi.org/10.2217/fca.15.77)

    CAS  PubMed  Google Scholar 

  53. Modin D, Sengeløv M, Jørgensen PG, Bruun NE, Olsen FJ, Dons M, Fritz Hansen T, Jensen JS, Biering-Sørensen T. Global longitudinal strain corrected by RR interval is a superior predictor of all-cause mortality in patients with systolic heart failure and atrial fibrillation. ESC Heart Failure 2017 5 311–318. (https://doi.org/10.1002/ehf2.12220)

    PubMed  PubMed Central  Google Scholar 

  54. Pinamonti B, Di Lenarda A., Sinagra G, Camerini F. Restrictive left ventricular filling pattern in dilated cardiomyopathy assessed by Doppler echocardiography: clinical, echocardiographic and hemodynamic correlations and prognostic implications. Heart Muscle Disease Study Group. Journal of the American College of Cardiology 1993 22 808–815. (https://doi.org/10.1016/0735-1097(93)90195-7)

    CAS  PubMed  Google Scholar 

  55. Xie GY, Berk MR, Smith MD, Gurley JC, DeMaria AN. Prognostic value of Doppler transmitral flow patterns in patients with congestive heart failure. Journal of the American College of Cardiology 1994 24 132–139. (https://doi.org/10.1016/0735-1097(94)90553-3)

    CAS  PubMed  Google Scholar 

  56. Hamdan A, Shapira Y, Bengal T, Mansur M, Vaturi M, Sulkes J, Battler A, Sagie A. Tissue Doppler imaging in patients with advanced heart failure: relation to functional class and prognosis. Journal of Heart and Lung Transplantation 2006 25 214–218. ({rs https://doi.org}/10.1016/j.healun.2005.09.002)

    Google Scholar 

  57. Acil T, Wichter T, Stypmann J, Janssen F, Paul M, Grude M, Scheld HH, Breithardt G, Bruch C. Prognostic value of tissue Doppler imaging in patients with chronic congestive heart failure. International Journal of Cardiology 2005 103 175–181. (https://doi.org/10.1016/j.ijcard.2004.08.048)

    PubMed  Google Scholar 

  58. Rossi A, Temporelli PL, Quintana M, Dini FL, Ghio S, Hillis GS, Klein AL, Marsan NA, Prior DL, Yu CM, et al. Independent relationship of left atrial size and mortality in patients with heart failure: an individual patient meta-analysis of longitudinal data (MeRGE Heart Failure). European Journal of Heart Failure 2009 11 929–936. (https://doi.org/10.1093/eurjhf/hfp112)

    PubMed  Google Scholar 

  59. Hsiao S-H, Chiou K-R. Left atrial expansion index predicts all-cause mortality and heart failure admissions in dyspnoea. European Journal of Heart Failure 2013 15 1245–1252. (https://doi.org/10.1093/eurjhf/hfbib87)

    PubMed  Google Scholar 

  60. Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, Arbustini E, Recusani F, Tavazzi L. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. Journal of the American College of Cardiology 2001 37 183–188. (https://doi.org/10.1016/S0735-1097(00)01102-5)

    CAS  PubMed  Google Scholar 

  61. Breiman L. Classification and Regression Trees. New York, NY, USA: Chapman & Hall, 1993.

    Google Scholar 

  62. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 2017 136 e137–e161. (https://doi.org/10.1161/CIR.0000000000000509)

    PubMed  Google Scholar 

  63. Doust JA, Pietrzak E, Dobson A, Glasziou P. How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. BMJ 2005 330 625. (https://doi.org/10.1136/bmj.330.7492.625)

    CAS  PubMed  PubMed Central  Google Scholar 

  64. van Veldhuisen DJ, Linssen GC, Jaarsma T, van Gilst WH, Hoes AW, Tijssen JG, Paulus WJ, Voors AA, Hillege HL. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. Journal of the American College of Cardiology 2013 61 1498–1506.

    PubMed  Google Scholar 

  65. Berger R, Huelsman M, Strecker K, Bojic A, Moser P, Stanek B, Pacher R. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation 2002 105 2392–2397. (https://doi.org/10.1161/01.CIR.0000016642.15031.34)

    PubMed  Google Scholar 

  66. Campana C, Pasotti M, Klersy C, Alessandrino G, Albertini R, Magrini G, Ghio S, Tavazzi L. Baseline and 6-month B-type natriuretic peptide changes are independent predictors of events in patients with advanced heart failure awaiting cardiac transplantation. Journal of Cardiovascular Medicine 2009 10 671–676. (https://doi.org/10.2459/JCM.0b013e328329346a)

    PubMed  Google Scholar 

  67. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, Clausell N, Desai AS, Diaz R, Fleg JL, et al. Spironolactone for heart failure with preserved ejection fraction. New England Journal of Medicine 2014 370 1383–1392. (https://doi.org/10.1056/NEJMoa1313731)

    CAS  Google Scholar 

  68. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure–abnormalities in active relaxation and passive stiffness of the left ventricle. New England Journal of Medicine 2004 350 1953–1959. (https://doi.org/10.1056/NEJMoa032566)

    CAS  Google Scholar 

  69. Westermann D, Kasner M, Steendijk P, Spillmann F, Riad A, Weitmann K, Hoffmann W, Poller W, Pauschinger M, Schultheiss HP, et al. Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 2008 117 2051–2060. (https://doi.org/10.1161/CIRCULATIONAHA.107.716886)

    PubMed  Google Scholar 

  70. Yip G, Wang M, Zhang Y, Fung JWH, Ho PY, Sanderson JE. Left ventricular long axis function in diastolic heart failure is reduced in both diastole and systole: time for a redefinition? Heart 2002 87 121–125. (https://doi.org/10.1136/heart.87.2.121)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Shah AM, Solomon SD. Myocardial deformation imaging: current status and future directions. Circulation 2012 125 e244–248. (https://doi.org/10.1161/CIRCULATIONAHA.111.086348)

    PubMed  Google Scholar 

  72. Sengupta PP, Krishnamoorthy VK, Korinek J, Narula J, Vannan MA, Lester SJ, Tajik JA, Seward JB, Khandheria BK, Belohlavek M. Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. Journal of the American Society of Echocardiography 2007 20 539–551. (https://doi.org/10.1016/j.echo.2006.10.013)

    PubMed  PubMed Central  Google Scholar 

  73. Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circulation Research 1969 24 339–347. (https://doi.org/10.1161/01.RES.24.3.339)

    PubMed  Google Scholar 

  74. Biering-Sørensen T, Hoffmann S, Mogelvang R, Zeeberg Iversen A, Galatius S, Fritz-Hansen T, Bech J, Jensen JS. Myocardial strain analysis by 2-dimensional speckle tracking echocardiography improves diagnostics of coronary artery stenosis in stable angina pectoris. Circulation: Cardiovascular Imaging 2014 7 58–65.

    Google Scholar 

  75. Tan YT, Wenzelburger F, Lee E, Heatlie G, Leyva F, Patel K, Frenneaux M, Sanderson JE. The pathophysiology of heart failure with normal ejection fraction: exercise echocardiography reveals complex abnormalities of both systolic and diastolic ventricular function involving torsion, untwist, and longitudinal motion. Journal of the American College of Cardiology 2009 54 36–46. (https://doi.org/10.1016/j.jacc.2009.03.037)

    PubMed  Google Scholar 

  76. Hung C-L, Verma A, Uno H, Shin SH, Bourgoun M, Hassanein AH, McMurray JJ, Velazquez EJ, Kober L, Pfeffer MA, et al. Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. Journal of the American College of Cardiology 2010 56 1812–1822. (https://doi.org/10.1016/j.jacc.2010.06.044)

    PubMed  Google Scholar 

  77. Shah AM, Solomon SD. Phenotypic and pathophysiological heterogeneity in heart failure with preserved ejection fraction. European Heart Journal 2012 33 1716–1717. (https://doi.org/10.1093/eurheartj/ehs124)

    PubMed  Google Scholar 

  78. Biering-Sørensen T, Solomon SD. Assessing contractile function when ejection fraction is normal: a case for strain imaging. Circulation: Cardiovascular Imaging 2015 8 e004181.

    Google Scholar 

  79. Kuznetsova T, Herbots L, Richart T, D’hooge J, Thijs L, Fagard RH, Herregods MC, Staessen JA. Left ventricular strain and strain rate in a general population. European Heart Journal 2008 29 2014–2023. (https://doi.org/10.1093/eurheartj/ehn280)

    PubMed  Google Scholar 

  80. Narayanan A, Aurigemma GP, Chinali M, Hill JC, Meyer TE, Tighe DA. Cardiac mechanics in mild hypertensive heart disease: a speckle-strain imaging study. Circulation: Cardiovascular Imaging 2009 2 382–390. (https://doi.org/10.1161/CIRCIMAGING.108.811620)

    Google Scholar 

  81. Jensen MT, Sogaard P, Andersen HU, Bech J, Fritz Hansen T, Biering-Sørensen T, Jørgensen PG, Galatius S, Madsen JK, Rossing P, et al. Global longitudinal strain is not impaired in type 1 diabetes patients without albuminuria: the Thousand & 1 study. JACC: Cardiovascular Imaging 2015 8 400–410. (https://doi.org/10.1016/j.jcmg.2014.12.020)

    PubMed  Google Scholar 

  82. Wong CY, O’Moore-Sullivan T., Leano R, Byrne N, Beller E, Marwick TH. Alterations of left ventricular myocardial characteristics associated with obesity. Circulation 2004 110 3081–3087. (https://doi.org/10.1161/01.CIR.0000147184.13872.0F)

    PubMed  Google Scholar 

  83. Ng AC, Delgado V, Bertini M, van der Meer RW, Rijzewijk LJ, Shanks M, Nucifora G, Smit JW, Diamant M, Romijn JA, et al. Findings from left ventricular strain and strain rate imaging in asymptomatic patients with type 2 diabetes mellitus. American Journal of Cardiology 2009 104 1398–1401. (https://doi.org/10.1016/j.amjcard.2009.06.063)

    Google Scholar 

  84. Sengupta SP, Caracciolo G, Thompson C, Abe H, Sengupta PP. Early impairment of left ventricular function in patients with systemic hypertension: New insights with 2-dimensional speckle tracking echocardiography. Indian Heart Journal 2013 65 48–52. (https://doi.org/10.1016/j.ihj.2012.12.009)

    PubMed  PubMed Central  Google Scholar 

  85. Wang J, Khoury DS, Yue Y, Torre-Amione G, Nagueh SF. Preserved left ventricular twist and circumferential deformation, but depressed longitudinal and radial deformation in patients with diastolic heart failure. European Heart Journal 2008 29 1283–1289. (https://doi.org/10.1093/eurheartj/ehn141)

    CAS  PubMed  Google Scholar 

  86. Mizuguchi Y, Oishi Y, Miyoshi H, Iuchi A, Nagase N, Oki T. The functional role of longitudinal, circumferential, and radial myocardial deformation for regulating the early impairment of left ventricular contraction and relaxation in patients with cardiovascular risk factors: a study with two-dimensional strain imaging. Journal of the American Society of Echocardiography 2008 21 1138–1144. (https://doi.org/10.1016/j.echo.2008.07.016)

    PubMed  Google Scholar 

  87. Aurigemma GP, Silver KH, Priest MA, Gaasch WH. Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy. Journal of the American College of Cardiology 1995 26 195–202. (https://doi.org/10.1016/0735-1097(95)00153-Q)

    CAS  PubMed  Google Scholar 

  88. Solomon SD, Anavekar N, Skali H, McMurray JJ, Swedberg K, Yusuf S, Granger CB, Michelson EL, Wang D, Pocock S, et al. Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation 2005 112 3738–3744. (https://doi.org/10.1161/CIRCULATIONAHA.105.561423)

    PubMed  Google Scholar 

  89. Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, Liu L, Pitt B, Pfeffer MA, Solomon SD. Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation 2015 132 402–414. (https://doi.org/10.1161/CIRCULATIONAHA.115.015884)

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang W, Chai SC, Lee SGS, MacDonald MR, Leong KTG. Prognostic factors after index hospitalization for heart failure with preserved ejection fraction. American Journal of Cardiology 2017 119 2017–2020. (https://doi.org/10.1016/j.amjcard.2017.03.032)

    Google Scholar 

  91. Guazzi M, Myers J, Arena R. Cardiopulmonary exercise testing in the clinical and prognostic assessment of diastolic heart failure. Journal of the American College of Cardiology 2005 46 1883–1890. (https://doi.org/10.1016/j.jacc.2005.07.051)

    PubMed  Google Scholar 

  92. Wang J, Fang F, Wai-Kwok Yip G, Sanderson JE, Feng W, Xie JM, Luo XX, Lee AP, Lam YY. Left ventricular long-axis performance during exercise is an important prognosticator in patients with heart failure and preserved ejection fraction. International Journal of Cardiology 2015 178 131–135. (https://doi.org/10.1016/j.ijcard.2014.10.130)

    PubMed  Google Scholar 

  93. Shah AM, Shah SJ, Anand IS, Sweitzer NK, O’Meara E, Heitner JF, Sopko G, Li G, Assmann SF, McKinlay SM, et al. Cardiac structure and function in heart failure with preserved ejection fraction: baseline findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist (TOPCAT) Trial. Circulation: Heart Failure 2014 7 104–115. (https://doi.org/10.1161/CIRCHEARTFAILURE.113.000887)

    CAS  Google Scholar 

  94. Kasner M, Westermann D, Steendijk P, Gaub R, Wilkenshoff U, Weitmann K, Hoffmann W, Poller W, Schultheiss HP, Pauschinger M, et al. Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation 2007 116 637–647. (https://doi.org/10.1161/CIRCULATIONAHA.106.661983)

    PubMed  Google Scholar 

  95. Borlaug BA, Jaber WA, Ommen SR, Lam CSP, Redfield MM, Nishimura RA. Diastolic relaxation and compliance reserve during dynamic exercise in heart failure with preserved ejection fraction. Heart 2011 97 964–969. (https://doi.org/10.1136/hrt.2010.212787)

    PubMed  Google Scholar 

  96. Okura H, Kubo T, Asawa K, Toda I, Yoshiyama M, Yoshikawa J, Yoshida K. Elevated E/E′ predicts prognosis in congestive heart failure patients with preserved systolic function. Circulation Journal 2009 73 86–91.

    PubMed  Google Scholar 

  97. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. European Journal of Echocardiography 2009 10 165–193. (https://doi.org/10.1093/ejechocard/jep007)

    PubMed  Google Scholar 

  98. Santos M, Rivero J, McCullough SD, West E, Opotowsky AR, Waxman AB, Systrom DM, Shah AM. E/e′ ratio in patients with unexplained dyspnea: lack of accuracy in estimating left ventricular filling pressure. Circulation: Heart Failure 2015 8 749–756. (https://doi.org/10.1161/CIRCHEARTFAILURE.115.002161)

    Google Scholar 

  99. Tsang TSM, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. American Journal of Cardiology 2002 90 1284–1289. (https://doi.org/10.1016/S0002-9149(02)02864-3)

    Google Scholar 

  100. Linssen GCM, Rienstra M, Jaarsma T, Voors AA, van Gelder IC, Hillege HL, van Veldhuisen DJ. Clinical and prognostic effects of atrial fibrillation in heart failure patients with reduced and preserved left ventricular ejection fraction. European Journal of Heart Failure 2011 13 1111–1120. (https://doi.org/10.1093/eurjhf/hfr066)

    PubMed  Google Scholar 

  101. Singh A, Addetia K, Maffessanti F, Mor-Avi V, Lang RM. LA strain categorization of LV diastolic dysfunction. JACC: Cardiovascular Imaging 2017 10 735–743.

    PubMed  Google Scholar 

  102. Santos AB, Roca GQ, Claggett B, Sweitzer NK, Shah SJ, Anand IS, Fang JC, Zile MR, Pitt B, Solomon SD, et al. Prognostic relevance of left atrial dysfunction in heart failure with preserved ejection fraction. Circulation: Heart Failure 2016 9 e002763. (https://doi.org/10.1161/CIRCHEARTFAILURE.115.002763)

    CAS  Google Scholar 

  103. Lam CSP, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. Journal of the American College of Cardiology 2009 53 1119–1126. (https://doi.org/10.1016/j.jacc.2008.11.051)

    PubMed  PubMed Central  Google Scholar 

  104. Leung CC, Moondra V, Catherwood E, Andrus BW. Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. American Journal of Cardiology 2010 106 284–286. (https://doi.org/10.1016/j.amjcard.2010.02.039)

    Google Scholar 

  105. Mohammed SF, Hussain I, AbouEzzeddine OF, Takahama H, Kwon SH, Forfia P, Roger VL, Redfield MM. Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation 2014 130 2310–2320. (https://doi.org/10.1161/CIRCULATIONAHA.113.008461)

    PubMed  PubMed Central  Google Scholar 

  106. Fine NM, Chen L, Bastiansen PM, Frantz RP, Pellikka PA, Oh JK, Kane GC. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circulation: Cardiovascular Imaging 2013 6 711–721. (https://doi.org/10.1161/CIRCIMAGING.113.000640)

    Google Scholar 

  107. Anand IS, Rector TS, Cleland JG, Kuskowski M, McKelvie RS, Persson H, McMurray JJ, Zile MR, Komajda M, Massie BM, et al. Prognostic value of baseline plasma amino-terminal pro-brain natriuretic peptide and its interactions with irbesartan treatment effects in patients with heart failure and preserved ejection fraction: findings from the I-PRESERVE trial. Circulation: Heart Failure 2011 4 569–577. (https://doi.org/10.1161/CIRCHEARTFAILURE.111.962654)

    CAS  Google Scholar 

  108. Moons KGM, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG, Grobbee DE. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart 2012 98 683–690. (https://doi.org/10.1136/heartjnl-2011-301246)

    PubMed  Google Scholar 

  109. Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Backer G, De Bacquer D, Ducimetière P, Jousilahti P, Keil U, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. European Heart Journal 2003 24 987–1003.

    CAS  PubMed  Google Scholar 

  110. Rahimi K, Bennett D, Conrad N, Williams TM, Basu J, Dwight J, Woodward M, Patel A, McMurray J, MacMahon S. Risk prediction in patients with heart failure: a systematic review and analysis. JACC: Heart Failure 2014 2 440–446. (https://doi.org/10.1016/j.jchf.2014.04.008)

    PubMed  Google Scholar 

  111. Moons KGM, Kengne AP, Grobbee DE, Royston P, Vergouwe Y, Altman DG, Woodward M. Risk prediction models: II. External validation, model updating, and impact assessment. Heart 2012 98 691–698. (https://doi.org/10.1136/heartjnl-2011-301247)

    PubMed  Google Scholar 

  112. Steyerberg EW, Moons KG, van der Windt DA, Hayden JA, Perel P, Schroter S, Riley RD, Hemingway H, Altman DG & PROGRESS Group. Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Medicine 2013 10 e1001381. (https://doi.org/10.1371/journal.pmed.1001381)

    PubMed  PubMed Central  Google Scholar 

  113. Nakatani S. Left ventricular rotation and twist: why should we learn? Journal of Cardiovascular Ultrasound 2011 19 1–6. (https://doi.org/10.4250/jcu.2011.19.1.1)

    PubMed  PubMed Central  Google Scholar 

  114. Haugaa KH, Grenne BL, Eek CH, Ersbøll M, Valeur N, Svendsen JH, Florian A, Sjøli B, Brunvand H, Køber L, et al. Strain echocardiography improves risk prediction of ventricular arrhythmias after myocardial infarction. JACC: Cardiovascular Imaging 2013 6 841–850. (https://doi.org/10.1016/j.jcmg.2013.03.005)

    PubMed  Google Scholar 

  115. Melenovsky V, Hwang S-J, Redfield MM, Zakeri R, Lin G, Borlaug BA. Left atrial remodeling and function in advanced heart failure with preserved or reduced ejection fraction. Circulation: Heart Failure 2015 8 295–303. (https://doi.org/10.1161/CIRCHEARTFAILURE.114.001667)

    Google Scholar 

  116. Melenovsky V, Hwang S-J, Lin G, Redfield MM, Borlaug BA. Right heart dysfunction in heart failure with preserved ejection fraction. European Heart Journal 2014 35 3452–3462.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Daniel Modin was supported by a scholarship from the Medical Society in Copenhagen during the preparation of this manuscript. Tor Biering-Sørensen was supported by the Fondsbørsvekselerer Henry Hansen og Hustrus Hovedlegat 2016. The sponsors had no role in the study design, data collection, data analysis, data interpretation or writing of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tor Biering-Sørensen MD PhD.

Rights and permissions

This work is licensed under a Creative Commons Attribution 4.0 International License.(http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modin, D., Andersen, D.M. & Biering-Sørensen, T. Echo and heart failure: when do people need an echo, and when do they need natriuretic peptides?. Echo Res Pract 5, R65–R75 (2018). https://doi.org/10.1530/ERP-18-0004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-18-0004

Key Words