Skip to main content

EDUCATIONAL SERIES IN CONGENITAL HEART DISEASE: Prenatal diagnosis of congenital heart disease

Abstract

This review article will guide the reader through the background of prenatal screening for congenital heart disease. The reader will be given insight into the normal screening views, common abnormalities, risk stratification of lesions and also recent advances in prenatal cardiology.

References

  1. Wren C, O’Sullivan J. Survival with congenital heart disease and need for follow up in adult life. Heart 200185 438–443. (https://doi.org/10.1136/heart.85.4.438)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hoffman JI, Kaplan S. The incidence of congenital heart disease. Journal of the American College of Cardiology 200239 1890–1900. (https://doi.org/10.1016/S0735-1097(02)01886-7)

    PubMed  Google Scholar 

  3. Hoffman J. Incidence of congenital heart disease: II. Prenatal incidence. Pediatric Cardiology 199516 155–165.

    CAS  PubMed  Google Scholar 

  4. Hoffman JI, Kaplan S, Liberthson RR. Prevalence of congenital heart disease. American Heart Journal 2004147 425–439. (https://doi.org/10.1016/j.ahj.2003.05.003)

    PubMed  Google Scholar 

  5. Rosano A, Botto LD, Botting B, Mastroiacovo P. Infant mortality and congenital anomalies from 1950 to 1994: an international perspective. Journal of Epidemiology and Community Health 200054 660–666. (https://doi.org/10.1136/jech.54.9.660)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Liebman J, Cullum L, Belloc NB. Natural history of transposition of the great arteries. Circulation 196940 237–262. (https://doi.org/10.1161/01.CIR.40.2.237)

    CAS  PubMed  Google Scholar 

  7. Jungner L, Jungner I, Engvall M, Döbeln U. Gunnar Jungner and the principles and practice of screening for disease. International Journal of Neonatal Screening 20173 23. (https://doi.org/10.3390/ijns3030023)

    PubMed  Google Scholar 

  8. Sharland G. Fetal cardiac screening and variation in prenatal detection rates of congenital heart disease: why bother with screening at all? Future Cardiology 20128 189–202. (https://doi.org/10.2217/fca.12.15)

    PubMed  Google Scholar 

  9. Allan LD. Antenatal diagnosis of heart disease. Heart 200083 367. (https://doi.org/10.1136/heart.83.3.367)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yagel S, Cohen SM, Achiron R. Examination of the fetal heart by five short-axis views: a proposed screening method for comprehensive cardiac evaluation. Ultrasound in Obstetrics and Gynecology 200117 367–369. (https://doi.org/10.1046/j.1469-0705.2001.00414.x)

    CAS  PubMed  Google Scholar 

  11. Bull C. Current and potential impact of fetal diagnosis on prevalence and spectrum of serious congenital heart disease at term in the UK. British Paediatric Cardiac Association. Lancet 1999354 1242–1247. (https://doi.org/10.1016/S0140-6736(99)01167-8)

    CAS  PubMed  Google Scholar 

  12. International Society of Ultrasound in Obstetrics and Gynecology, Carvalho JS, Allan LD, Chaoui R, Copel JA, DeVore GR, Hecher K, Lee W, Munoz H, Paladini D, Tutschek B, Yagel S. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound in Obstetrics and Gynecology 201341 348–359. (https://doi.org/10.1002/uog.12403)

    PubMed  Google Scholar 

  13. Gardiner HM, Kovacevic A, van der Heijden LB, Pfeiffer PW, Franklin RC, Gibbs JL, Averiss IE, Larovere JM. Prenatal screening for major congenital heart disease: assessing performance by combining national cardiac audit with maternity data. Heart 2014100 375–382. (https://doi.org/10.1136/heartjnl-2013-304640)

    PubMed  Google Scholar 

  14. McBrien A, Sands A, Craig B, Dornan J, Casey F. Impact of a regional training program in fetal echocardiography for sonographers on the antenatal detection of major congenital heart disease. Ultrasound in Obstetrics and Gynecology 201036 279–284. (https://doi.org/10.1002/uog.7616)

    CAS  PubMed  Google Scholar 

  15. Gardiner H, Chaoui R. The fetal three-vessel and tracheal view revisited. Seminars in Fetal and Neonatal Medicine 201318 261–268. (https://doi.org/10.1016/j.siny.2013.01.007)

    PubMed  Google Scholar 

  16. Eronen MP, Aittomäki KA, Kajantie EO, Sairanen HI, Pesonen EJ. The outcome of patients with right atrial isomerism is poor. Pediatric Cardiology 201334 302–307. (https://doi.org/10.1007/s00246-012-0445-y)

    PubMed  Google Scholar 

  17. Pepes S, Zidere V, Allan LD. Prenatal diagnosis of left atrial isomerism. Heart 200995 1974–1977. (https://doi.org/10.1136/hrt.2009.165514)

    CAS  PubMed  Google Scholar 

  18. Lim JS, McCrindle BW, Smallhorn JF, Golding F, Caldarone CA, Taketazu M, Jaeggi ET. Clinical features, management, and outcome of children with fetal and postnatal diagnoses of isomerism syndromes. Circulation 2005112 2454–2461. (https://doi.org/10.1161/CIRCULATIONAHA.105.552364)

    PubMed  Google Scholar 

  19. Vogel M, McELhinney DB, Marcus E, Morash D, Jennings RW, Tworetzky W. Significance and outcome of left heart hypoplasia in fetal congenital diaphragmatic hernia. Ultrasound in Obstetrics and Gynecology 201035 310–317. (https://doi.org/10.1002/uog.7497)

    CAS  PubMed  Google Scholar 

  20. Gaur L, Talemal L, Bulas D, Donofrio MT. Utility of fetal magnetic resonance imaging in assessing the fetus with cardiac malposition. Prenatal Diagnosis 201636 752–759. (https://doi.org/10.1002/pd.4856)

    PubMed  Google Scholar 

  21. Vigneswaran TV, Kametas NA, Zinevich Y, Bataeva R, Allan LD, Zidere V. Assessment of cardiac angle in fetuses with congenital heart disease at risk of 22q11.2 deletion. Ultrasound in Obstetrics and Gynecology 201546 695–699. (https://doi.org/10.1002/uog.14832)

    CAS  PubMed  Google Scholar 

  22. Thomas JT, Petersen S, Cincotta R, Lee-Tannock A, Gardener G. Absent ductus venosus–outcomes and implications from a tertiary centre. Prenatal Diagnosis 201232 686–691. (https://doi.org/10.1002/pd.3889)

    PubMed  Google Scholar 

  23. Jatavan P, Kemthong W, Charoenboon C, Tongprasert F, Sukpan K, Tongsong T. Hemodynamic studies of isolated absent ductus venosus. Prenatal Diagnosis 201636 74–80. (https://doi.org/10.1002/pd.4715)

    PubMed  Google Scholar 

  24. Andrews R, Tibby S, Sharland G, Simpson JM. Prediction of outcome of tricuspid valve malformations diagnosed during fetal life. American Journal of Cardiology 2008101 1046–1050. (https://doi.org/10.1016/j.amjcard.2007.11.049)

    Google Scholar 

  25. Hornberger LK, Sahn DJ, Kleinman CS, Copel JA, Reed KL. Tricuspid valve disease with significant tricuspid insufficiency in the fetus: diagnosis and outcome. Journal of the American College of Cardiology 199117 167–173. (https://doi.org/10.1016/0735-1097(91)90722-L)

    CAS  PubMed  Google Scholar 

  26. Huggon IC, Cook AC, Smeeton NC, Magee AG, Sharland GK. Atrioventricular septal defects diagnosed in fetal life: associated cardiac and extra-cardiac abnormalities and outcome. Journal of the American College of Cardiology 200036 593–601. (https://doi.org/10.1016/S0735-1097(00)00757-9)

    CAS  PubMed  Google Scholar 

  27. Langford K, Sharland G, Simpson J. Relative risk of abnormal karyotype in fetuses found to have an atrioventricular septal defect (AVSD) on fetal echocardiography. Prenatal Diagnosis 200525 137–139. (https://doi.org/10.1002/pd.1037)

    PubMed  Google Scholar 

  28. Allan LD, Sharland G, Tynan M. The natural history of the hypoplastic left heart syndrome. International Journal of Cardiology 198925 341–343. (https://doi.org/10.1016/0167-5273(89)90226-X)

    CAS  PubMed  Google Scholar 

  29. Tworetzky W, McElhinney DB, Reddy VM, Brook MM, Hanley FL, Silverman NH. Improved surgical outcome after fetal diagnosis of hypoplastic left heart syndrome. Circulation 2001103 1269–1273. (https://doi.org/10.1161/01.CIR.103.9.1269)

    CAS  PubMed  Google Scholar 

  30. Morris SA, Ethen MK, Penny DJ, Canfield MA, Minard CG, Fixler DE, Nembhard WN. Prenatal diagnosis, birth location, surgical center, and neonatal mortality in infants with hypoplastic left heart syndrome. Circulation 2014129 285–292. (https://doi.org/10.1161/CIRCULATIONAHA.113.003711)

    PubMed  Google Scholar 

  31. Allan LD, Chita SK, Al-Ghazali W, Crawford DC, Tynan M. Doppler echocardiographic evaluation of the normal human fetal heart. British Heart Journal 198757 528–533. (https://doi.org/10.1136/hrt.57.6.528)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Donofrio MT, Moon-Grady AJ, Hornberger LK, Copel JA, Sklansky MS, Abuhamad A, Cuneo BF, Huhta JC, Jonas RA, Krishnan A, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 2014129 2183–2242. (https://doi.org/10.1161/01.cir.0000437597.44550.5d)

    PubMed  Google Scholar 

  33. Zosmer N, Bajoria R, Weiner E, Rigby M, Vaughan J, Fisk NM. Clinical and echographic features of in utero cardiac dysfunction in the recipient twin in twin-twin transfusion syndrome. British Heart Journal 199472 74–79. (https://doi.org/10.1136/hrt.72.1.74)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Freud LR, Moon-Grady A, Escobar-Diaz MC, Gotteiner NL, Young LT, McElhinney DB, Tworetzky W. Low rate of prenatal diagnosis among neonates with critical aortic stenosis: insight into the natural history in utero. Ultrasound in Obstetrics and Gynecology 201545 326–332. (https://doi.org/10.1002/uog.14667)

    CAS  PubMed  Google Scholar 

  35. Jouannic JM, Gavard L, Fermont L, Bidois J, Parat S, Vouhe PR, Dumez Y, Sidi D, Bonnet D. Sensitivity and specificity of prenatal features of physiological shunts to predict neonatal clinical status in transposition of the great arteries. Circulation 2004110 1743–1746. (https://doi.org/10.1161/01.CIR.0000144141.18560.CF)

    PubMed  Google Scholar 

  36. Rychik J, Ayres N, Cuneo B, Gotteiner N, Hornberger L, Spevak PJ, Veld M. American Society of Echocardiography guidelines and standards for performance of the fetal echocardiogram. Journal of the American Society of Echocardiography 200417 803–810. (https://doi.org/10.1016/j.echo.2004.04.011)

    PubMed  Google Scholar 

  37. Fetal Echocardiography Task Force; American Institute of Ultrasound in Medicine Clinical Standards Committee; American College of Obstetricians and Gynecologists; Society for Maternal-Fetal Medicine. AIUM practice guideline for the performance of fetal echocardiography. Journal of Ultrasound in Medicine 201130 127–136. (https://doi.org/10.7863/jum.2011.30.1.127)

    Google Scholar 

  38. Zidere V, Tsapakis EG, Huggon IC, Allan LD. Right aortic arch in the fetus. Ultrasound in Obstetrics and Gynecology 200628 876–881. (https://doi.org/10.1002/uog.3841)

    CAS  PubMed  Google Scholar 

  39. Mogra R, Kesby G, Sholler G, Hyett J. Identification and management of fetal isolated right-sided aortic arch in an unselected population. Ultrasound in Obstetrics and Gynecology 201648 739–743. (https://doi.org/10.1002/uog.15892)

    CAS  PubMed  Google Scholar 

  40. Achiron R, Rotstein Z, Heggesh J, Bronstein M, Zimand S, Lipitz S, Yagel S. Anomalies of the fetal aortic arch: a novel sonographic approach to in-utero diagnosis. Ultrasound in Obstetrics and Gynecology 200220 553–557. (https://doi.org/10.1046/j.1469-0705.2002.00850.x)

    CAS  PubMed  Google Scholar 

  41. Razon Y, Berant M, Fogelman R, Amir G, Birk E. Prenatal diagnosis and outcome of right aortic arch without significant intracardiac anomaly. Journal of the American Society of Echocardiography 201427 1352–1358. (https://doi.org/10.1016/j.echo.2014.08.003)

    PubMed  Google Scholar 

  42. Miranda J, Callaghan N, Miller O, Simpson JM, Sharland G. Right aortic arch diagnosed antenatally: associations and outcome in 98 fetuses. Heart 2014100 54–59. (https://doi.org/10.1136/heartjnl-2013-304860)

    PubMed  Google Scholar 

  43. Momma K, Matsuoka R, Takao A. Aortic arch anomalies associated with chromosome 22q11 deletion (CATCH 22). Pediatric Cardiology 199920 97–102. (https://doi.org/10.1007/s002469900414)

    CAS  PubMed  Google Scholar 

  44. McElhinney DB, Clark BJ, Weinberg PM, Kenton ML, McDonald-McGinn D, Driscoll DA, Zackai EH, Goldmuntz E. Association of chromosome 22q11 deletion with isolated anomalies of aortic arch laterality and branching. Journal of the American College of Cardiology 200137 2114–2119. (https://doi.org/10.1016/S0735-1097(01)01286-4)

    CAS  PubMed  Google Scholar 

  45. O’Mahony EF, Hutchinson DP, McGillivray G, Nisbet DL, Palma-Dias R. Right-sided aortic arch in the age of microarray. Prenatal Diagnosis 201737 440–445. (https://doi.org/10.1002/pd.5029)

    PubMed  Google Scholar 

  46. Tabor A, Vestergaard CHF, Lidegaard Ø. Fetal loss rate after chorionic villus sampling and amniocentesis: an 11‐year national registry study. Ultrasound in Obstetrics and Gynecology 200934 19–24. (https://doi.org/10.1002/uog.6377)

    CAS  PubMed  Google Scholar 

  47. Jain S, Kleiner B, Moon-Grady A, Hornberger LK. Prenatal diagnosis of vascular rings. Journal of Ultrasound in Medicine 201029 287–294. (https://doi.org/10.7863/jum.2010.29.2.287)

    PubMed  Google Scholar 

  48. Patel CR, Lane JR, Spector ML, Smith PC. Fetal echocardiographic diagnosis of vascular rings. Journal of Ultrasound in Medicine 200625 251–257. (https://doi.org/10.7863/jum.2006.25.2.251)

    PubMed  Google Scholar 

  49. Hunter L, Callaghan N, Patel K, Rinaldi L, Bellsham-Revell Sharland G. Prenatal echocardiographic diagnosis of double aortic arch. Ultrasound in Obstetrics and Gynecology 201545 483–485. (https://doi.org/10.1002/uog.13408)

    CAS  PubMed  Google Scholar 

  50. Fleck RJ, Pacharn P, Fricke BL, Ziegler MA, Cotton RT, Donnelly LF. Imaging findings in pediatric patients with persistent airway symptoms after surgery for double aortic arch. American Journal of Roentgenology 2002178 1275–1259. (https://doi.org/10.2214/ajr.178.5.1781275)

    PubMed  Google Scholar 

  51. Shah RK, Mora BN, Bacha E, Sena LM, Buonomo C, Del Nido P, Rahbar R. The presentation and management of vascular rings: an otolaryngology perspective. International Journal of Pediatric Otorhinolaryngology 200771 57–62. (https://doi.org/10.1016/j.ijporl.2006.08.025)

    PubMed  Google Scholar 

  52. Turner A, Gavel G, Coutts J. Vascular rings–presentation, investigation and outcome. European Journal of Pediatrics 2005164 266–270. (https://doi.org/10.1007/s00431-004-1607-6)

    PubMed  Google Scholar 

  53. Vigneswaran TV, Kapravelou E, Bell AJ, Nyman A, Pushparajah K, Simpson JM, Durward A, Zidere V. Correlation of symptoms with bronchoscopic findings in children with a prenatal diagnosis of a right aortic arch and left arterial duct. Pediatric Cardiology 201839 665–673. (https://doi.org/10.1007/s00246-017-1804-5)

    PubMed  Google Scholar 

  54. Herrin MA, Zurakowski D, Fynn-Thompson F, Baird CW, del Nido PJ, Emani SM. Outcomes following thoracotomy or thoracoscopic vascular ring division in children and young adults. Journal of Thoracic and Cardiovascular Surgery 2017154 607–615. (https://doi.org/10.1016/j.jtcvs.2017.01.058)

    Google Scholar 

  55. D’Antonio F, Khalil A, Zidere V, Carvalho JS. Fetuses with right aortic arch: a multicenter cohort study and meta-analysis. Ultrasound in Obstetrics and Gynecology 201647 423–432. (https://doi.org/10.1002/uog.15805)

    PubMed  Google Scholar 

  56. 56Alsenaidi K, Gurofsky R, Karamlou T, Williams WG, McCrindle BW. Management and outcomes of double aortic arch in 81 patients. Pediatrics 2006118 e1336–e1341. (https://doi.org/10.1542/peds.2006-1097)

    PubMed  Google Scholar 

  57. Shum DJ, Clifton MS, Cakley FV, Hornberger LK, Joe BN, Goldstein RB, Harrison MR. Prenatal tracheal obstruction due to double aortic arch: a potential mimic of congenital high airway obstruction syndrome. American Journal of Roentgenology 2007188 W82–W85. (https://doi.org/10.2214/AJR.05.0356)

    PubMed  Google Scholar 

  58. Abu-Harb M, Hey E, Wren C. Death in infancy from unrecognised congenital heart disease. Archives of Disease in Childhood 199471 3–7. (https://doi.org/10.1136/adc.71.1.3)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Roehr C, Pas TAB, Dold SK, Breindahl M, Blennow M, Rudiger M, Gupta S. Investigating the European perspective of neonatal point-of-care echocardiography in the neonatal intensive care unit–a pilot study. European Journal of Pediatrics 2013172 907–911. (https://doi.org/10.1007/s00431-013-1963-1)

    CAS  PubMed  Google Scholar 

  60. Furuya K, Sasaki Y, Takeuchi T, Urita Y. Characteristics of 22q 11.2 deletion syndrome undiagnosed until adulthood: an example suggesting the importance of psychiatric manifestations. BMJ Case Reports 20152015 1–4. (https://doi.org/10.1136/bcr-2014-208903)

    Google Scholar 

  61. Slodki M, Axt‐Fliedner R, Respondek‐Liberska M. P20.08: critical heart defects in prenatal classification of congenital heart disease. Ultrasound in Obstetrics and Gynecology 201648 232–232. (https://doi.org/10.1002/uog.15773)

    Google Scholar 

  62. Donofrio MT, Levy RJ, Schuette JJ, Skurow-Todd K, Sten MBM, Stallings C, Pike JI, Krishnan A, Ratnayaka K, Sinha P, et al. Specialized delivery room planning for fetuses with critical congenital heart disease. American Journal of Cardiology 2013111 737–747. (https://doi.org/10.1016/j.amjcard.2012.11.029)

    Google Scholar 

  63. Thakur V, Dutil N, Schwartz SM, Jaeggi E. Impact of prenatal diagnosis on the management and early outcome of critical duct-dependent cardiac lesions. Cardiology in the Young 201828 548–553. (https://doi.org/10.1017/S1047951117002682)

    PubMed  Google Scholar 

  64. Soongswang J, Adatia I, Newman C, Smallhorn JF, Williams WG, Freedom RM. Mortality in potential arterial switch candidates with transposition of the great arteries. Journal of the American College of Cardiology 199832 753–757. (https://doi.org/10.1016/S0735-1097(98)00310-6)

    CAS  PubMed  Google Scholar 

  65. Vigneswaran TV, Zidere V, Miller OI, Simpson JM, Sharland GK. Usefulness of the prenatal echocardiogram in fetuses with isolated transposition of the great arteries to predict the need for balloon atrial septostomy. American Journal of Cardiology 2017119 1463–1467. (https://doi.org/10.1016/j.amjcard.2017.01.017)

    Google Scholar 

  66. Feinstein JA, Benson DW, Dubin AM, Cohen MS, Maxey DM, Mahle WT, Pahl E, Villafane J, Bhatt AB, Peng LF, et al. Hypoplastic left heart syndrome: current considerations and expectations. Journal of the American College of Cardiology 201259 S1–S42. (https://doi.org/10.1016/j.jacc.2011.09.022)

    PubMed  PubMed Central  Google Scholar 

  67. Mahle WT, Clancy RR, McGaurn SP, Goin JE, Clark BJ. Impact of prenatal diagnosis on survival and early neurologic morbidity in neonates with the hypoplastic left heart syndrome. Pediatrics 2001107 1277–1282. (https://doi.org/10.1542/peds.107.6.1277)

    CAS  PubMed  Google Scholar 

  68. Kumar R, Newburger JW, Gauvreau K, Kamenir SA, Hornberger L. Comparison of outcome when hypoplastic left heart syndrome and transposition of the great arteries are diagnosed prenatally versus when diagnosis of these two conditions is made only postnatally. American Journal of Cardiology 199983 1649–1653. (https://doi.org/10.1016/S0002-9149(99)00172-1)

    CAS  Google Scholar 

  69. Siffel C, Riehle-Colarusso T, Oster ME, Correa A. Survival of children with hypoplastic left heart syndrome. Pediatrics 2015136 e864–e870. (https://doi.org/10.1542/peds.2014-1427)

    PubMed  Google Scholar 

  70. Better DJ, Apfel HD, Zidere V, Allan LD. Pattern of pulmonary venous blood flow in the hypoplastic left heart syndrome in the fetus. Heart 199981 646–649. (https://doi.org/10.1136/hrt.81.6.646)

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Divanović A, Hor K, Cnota J, Hirsch R, Kinsel-Ziter M, Michelfelder E. Prediction and perinatal management of severely restrictive atrial septum in fetuses with critical left heart obstruction: clinical experience using pulmonary venous Doppler analysis. Journal of Thoracic and Cardiovascular Surgery 2011141 988–994. (https://doi.org/10.1016/j.jtcvs.2010.09.043)

    Google Scholar 

  72. Saul D, Degenhardt K, Iyoob SD, Surrey LF, Johnson AM, Rychik J, Victoria T. Hypoplastic left heart syndrome and the nutmeg lung pattern in utero: a cause and effect relationship or prognostic indicator? Pediatric Radiology 201646 483–489. (https://doi.org/10.1007/s00247-015-3514-6)

    PubMed  Google Scholar 

  73. Sharland GK, Chan KY, Allan LD. Coarctation of the aorta: difficulties in prenatal diagnosis. British Heart Journal 199471 70–75. (https://doi.org/10.1136/hrt.71.1.70)

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pasquini L, Mellander M, Seale A, Matsui H, Roughton M, Ho SY, Gardiner HM. Z-scores of the fetal aortic isthmus and duct: an aid to assessing arch hypoplasia. Ultrasound in Obstetrics and Gynecology 200729 628–633. (https://doi.org/10.1002/uog.4021)

    CAS  PubMed  Google Scholar 

  75. Jowett V, Aparicio P, Santhakumaran S, Seale A, Jicinska H, Gardiner HM. Sonographic predictors of surgery in fetal coarctation of the aorta. Ultrasound in Obstetrics and Gynecology 201240 47–54. (https://doi.org/10.1002/uog.11161)

    CAS  PubMed  Google Scholar 

  76. Matsui H, Mellander M, Roughton M, Jicinska H, Gardiner HM. Morphological and physiological predictors of fetal aortic coarctation. Circulation 2008118 1793–1801. (https://doi.org/10.1161/CIRCULATIONAHA.108.787598)

    PubMed  Google Scholar 

  77. Hornberger L, Sahn DJ, Kleinman CS, Copel J, Silverman NH. Antenatal diagnosis of coarctation of the aorta: a multicenter experience. Journal of the American College of Cardiology 199423 417–423. (https://doi.org/10.1016/0735-1097(94)90429-4)

    CAS  PubMed  Google Scholar 

  78. Brown KL, Ridout DA, Hoskote A, Verhulst A, Ricci M, Bull C. Delayed diagnosis of congenital heart disease worsens preoperative condition and outcome of surgery in neonates. Heart 200692 1298–1302. (https://doi.org/10.1136/hrt.2005.078097)

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Head CE, Jowett VC, Sharland G, Simpson JM. Timing of presentation and postnatal outcome of infants suspected of having coarctation of the aorta during fetal life. Heart 200591 1070–1074. (https://doi.org/10.1136/hrt.2003.033027)

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Miranda JO, Hunter L, Tibby S, Sharland G, Miller O, Simpson J. Myocardial deformation in fetuses with coarctation of the aorta: a case-control study. Ultrasound in Obstetrics and Gynecology 201749 623–629. (https://doi.org/10.1002/uog.15939)

    CAS  PubMed  Google Scholar 

  81. Lloyd DFA, van Amerom JFP, Pushparajah K, Simpson JM, Zidere V, Miller Q, Sharland G, Allsop J, Fox M, Lohezic M, et al. An exploration of the potential utility of fetal cardiovascular MRI as an adjunct to fetal echocardiography. Prenatal Diagnosis 201636 916–925. (https://doi.org/10.1002/pd.4912)

    PubMed  PubMed Central  Google Scholar 

  82. Marelli A, Miller SP, Marino BS, Jefferson AL, Newburger JW. Brain in congenital heart disease across the lifespan. Circulation 2016133 1951–1962. (https://doi.org/10.1161/CIRCULATIONAHA.115.019881)

    PubMed  PubMed Central  Google Scholar 

  83. McCusker CG, Doherty NN, Molloy B, Rooney N, Mulholland C, Sands A, Caig B, Stewart M, Casey F. A controlled trial of early interventions to promote maternal adjustment and development in infants born with severe congenital heart disease. Child: Care, Health and Development 201036 110–117.

    CAS  Google Scholar 

  84. Andropoulos DB, Hunter JV, Nelson DP, Stayer SA, Stark AS, McKenzie ED, Heinle JS, Graves DE, Fraser CD. Brain immaturity is associated with brain injury before and after neonatal cardiac surgery with high-flow bypass and cerebral oxygenation monitoring. Journal of Thoracic and Cardiovascular Surgery 2010139 543–556. (https://doi.org/10.1016/j.jtcvs.2009.08.022)

    Google Scholar 

  85. Miller SP, McQuillen PS, Hamrick S, Xu D, Gidden DV, Charlton N, Karl T, Azakie A, Ferriero DM, Barkovich AJ, et al. Abnormal brain development in newborns with congenital heart disease. New England Journal of Medicine 2007357 1928–1938. (https://doi.org/10.1002/uog.12526)

    CAS  Google Scholar 

  86. Petit CJ, Rome JJ, Wernovsky G, Mason SE, Shera DM, Nicolson SC, Montenegro LM, Tabbutt S, Zimmerman RA, Licht DJ. Preoperative brain injury in transposition of the great arteries is associated with oxygenation and time to surgery, not balloon atrial septostomy. Circulation 2009119 709–716. (https://doi.org/10.1161/CIRCULATIONAHA.107.760819)

    PubMed  PubMed Central  Google Scholar 

  87. McQuillen PS, Goff DA, Licht DJ. Effects of congenital heart disease on brain development. Progress in Pediatric Cardiology 201029 79–85. (https://doi.org/10.1016/j.ppedcard.2010.06.011)

    PubMed  PubMed Central  Google Scholar 

  88. Limperopoulos C, Tworetzky W, McElhinney DB, Newburger JW, Brown DW, Robertson RL, Guizard N, McGrath E, Geva J, Annese D, et al. Brain volume and metabolism in fetuses with congenital heart disease. Circulation 2010121 26–33. (https://doi.org/10.1161/CIRCULATIONAHA.109.865568)

    CAS  PubMed  Google Scholar 

  89. Dimitropoulos A, McQuillen PS, Sethi V, Moosa A, Chau V, Xu D, Brant R, Azakie A, Campbell A, Barkovich AJ, et al. Brain injury and development in newborns with critical congenital heart disease. Neurology 201381 241–248. (https://doi.org/10.1212/WNL.0b013e31829bfdcf)

    PubMed  PubMed Central  Google Scholar 

  90. Donofrio MT, Bremer YA, Schieken RM, Gennings C, Morton LD, Eidem BW, Cetta F, Falkensammer CB, Huhta JC, Kleinman S. Autoregulation of cerebral blood flow in fetuses with congenital heart disease: the brain sparing effect. Pediatric Cardiology 200324 436–443. (https://doi.org/10.1007/s00246-002-0404-0)

    CAS  PubMed  Google Scholar 

  91. Sun L, MacGowan CK, Sled JG, Yoo SJ, Manlhiot C, Porayette P, Grosse-Wortmann L, Jaeggi E, McCrindle BW, Kingdon J, et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 2015131 1313–1323. (https://doi.org/10.1161/CIRCULATIONAHA.114.013051)

    CAS  PubMed  PubMed Central  Google Scholar 

  92. McCusker CG, Armstrong MP, Mullen M, Doherty NN, Casey FA. A sibling-controlled, prospective study of outcomes at home and school in children with severe congenital heart disease. Cardiology in the Young 201223 507–516. (https://doi.org/10.1017/S1047951112001667)

    PubMed  Google Scholar 

  93. McCusker CG, Doherty NN, Molloy B, Casey F, Rooney N, Mulholland C, Sands A, Craig B, Stewart M. Determinants of neuropsychological and behavioural outcomes in early childhood survivors of congenital heart disease. Archives of Disease in Childhood 200792 137–141. (https://doi.org/10.1136/adc.2005.092320)

    CAS  PubMed  Google Scholar 

  94. Peyvandi S, De Santiago V, Chakkarapani E, Chau V, Campbell A, Poskitt KJ, Xu D, Barkovich AJ, Miller S, McQuillen P. Association of prenatal diagnosis of critical congenital heart disease with postnatal brain development and the risk of brain injury. JAMA Pediatrics 2016170 e154450. (https://doi.org/10.1001/jamapediatrics.2015.4450)

    PubMed  PubMed Central  Google Scholar 

  95. Doherty N, McCusker CG, Molloy B, Mulholland C, Rooney N, Craig B, Sands A, Stewart M, Casey F. Predictors of psychological functioning in mothers and fathers of infants born with severe congenital heart disease. Journal of Reproductive and Infant Psychology 200927 390–400. (https://doi.org/10.1080/02646830903190920)

    Google Scholar 

  96. Kolaitis A, Meentken MG, Utens EMWJ. Mental health problems in parents of children with congenital heart disease. Frontiers in Pediatrics 20175 102. (https://doi.org/10.3389/fped.2017.00102)

    PubMed  PubMed Central  Google Scholar 

  97. Nicolaides KH, Heath V, Cicero S. Increased fetal nuchal translucency at 11–14 weeks. Prenatal Diagnosis 200222 308–315. (https://doi.org/10.1002/pd.308)

    PubMed  Google Scholar 

  98. Ghi T, Huggon IC, Zosmer N, Nicolaides KH. Incidence of major structural cardiac defects associated with increased nuchal translucency but normal karyotype. Ultrasound in Obstetrics and Gynecology 200118 610–614. (https://doi.org/10.1046/j.0960-7692.2001.00584.x)

    CAS  PubMed  Google Scholar 

  99. Hyett J, Perdu M, Sharland G, Snijders R, Nicolaides KH. Using fetal nuchal translucency to screen for major congenital cardiac defects at 10–14 weeks of gestation: population based cohort study. BMJ 1999318 81–85. (https://doi.org/10.1136/bmj.318.7176.81)

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Pereira S, Ganapathy R, Syngelaki A, Maiz N, Nicolaides KH. Contribution of fetal tricuspid regurgitation in first-trimester screening for major cardiac defects. Obstetrics and Gynecology 2011117 1384–1391. (https://doi.org/10.1097/AOG.0b013e31821aa720)

    PubMed  Google Scholar 

  101. Maiz N, Plasencia W, Dagklis T, Faros E, Nicolaides K. Ductus venosus Doppler in fetuses with cardiac defects and increased nuchal translucency thickness. Ultrasound in Obstetrics and Gynecology 200831 256–260. (https://doi.org/10.1002/uog.5262)

    CAS  PubMed  Google Scholar 

  102. Maiz N, Nicolaides KH. Ductus venosus in the first trimester: contribution to screening of chromosomal, cardiac defects and monochorionic twin complications. Fetal Diagnosis and Therapy 201028 65–71. (https://doi.org/10.1159/000314036)

    PubMed  Google Scholar 

  103. Carvalho JS, Moscoso G, Ville Y. First-trimester transabdominal fetal echocardiography. Lancet 1998351 1023–1027. (https://doi.org/10.1016/S0140-6736(97)08406-7)

    CAS  PubMed  Google Scholar 

  104. Carvalho MH, Brizot ML, Lopes LM, Chiba CH, Miyadahira S, Zugaib M. Detection of fetal structural abnormalities at the 11–14 week ultrasound scan. Prenatal Diagnosis 200222 1–4. (https://doi.org/10.1002/pd.200)

    CAS  PubMed  Google Scholar 

  105. Khalil A, Nicolaides KH. Fetal heart defects: potential and pitfalls of first-trimester detection. Seminars in Fetal and Neonatal Medicine 201318 251–260. (https://doi.org/10.1016/j.siny.2013.05.004)

    PubMed  Google Scholar 

  106. Yagel S, Cohen SM, Messing B. First and early second trimester fetal heart screening. Current Opinion in Obstetrics and Gynecology 200719 183–190. (https://doi.org/10.1097/GCO.0b013e3280895de6)

    PubMed  Google Scholar 

  107. Jicinska H, Vlasin P, Jicinsky M, Grochova I, Tomek V, Volaufova J, Skovranek J, Marek J. Does first-trimester screening modify the natural history of congenital heart disease? Analysis of outcome of regional cardiac screening at 2 different time periods. Circulation 2017135 1045–1055. (https://doi.org/10.1161/CIRCULATIONAHA.115.020864)

    PubMed  Google Scholar 

  108. Gil MM, Accurti V, Santacruz B, Plana MN, Nicolaides KH. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: updated meta-analysis. Ultrasound in Obstetrics and Gynecology 201750 302–314. (https://doi.org/10.1002/uog.17484)

    CAS  PubMed  Google Scholar 

  109. Miltoft CB, Rode L, Ekelund CK, Sundberg K, Kjaergaard S, Zingenberg H, Tabor A. Contingent first‐trimester screening for aneuploidies with cell‐free DNA in a Danish clinical setting. Ultrasound in Obstetrics and Gynecology 201851 470–479. (https://doi.org/10.1002/uog.17562)

    CAS  PubMed  Google Scholar 

  110. Carpenter RJ, Strasburger JF, Garson A, Smith RT, Deter RL, Engelhardt HT. Fetal ventricular pacing for hydrops secondary to complete atrioventricular block. Journal of the American College of Cardiology 19868 1434–1436. (https://doi.org/10.1016/S0735-1097(86)80319-9)

    PubMed  Google Scholar 

  111. Weber R, Stambach D, Jaeggi E. Diagnosis and management of common fetal arrhythmias. Journal of the Saudi Heart Association 201123 61–66. (https://doi.org/10.1016/j.jsha.2011.01.008)

    PubMed  PubMed Central  Google Scholar 

  112. Mellander M, Gardiner H. Foetal therapy, what works? An overview. Cardiology in the Young 201424 36–40. (https://doi.org/10.1017/S1047951114001231)

    PubMed  Google Scholar 

  113. Strasburger JF, Cheulkar B, Wakai RT. Magnetocardiography for fetal arrhythmias. Heart Rhythm 20085 1073–1076. (https://doi.org/10.1016/j.hrthm.2008.02.035)

    PubMed  PubMed Central  Google Scholar 

  114. Jaeggi ET, Carvalho JS, Groot E, Api O, Clur SA, Rammeloo L, McCrindle BW, Ryan G, Manlhout C, Blom NA. Comparison of transplacental treatment of fetal supraventricular tachyarrhythmias with digoxin, flecainide, and sotalol: results of a nonrandomized multicenter study. Circulation 2011124 1747–1754. (https://doi.org/10.1161/CIRCULATIONAHA.111.026120)

    CAS  PubMed  Google Scholar 

  115. Hunter LE, Simpson JM. Atrioventricular block during fetal life. Journal of the Saudi Heart Association 201527 164–178. (https://doi.org/10.1016/j.jsha.2014.07.001)

    PubMed  Google Scholar 

  116. Friedman DM, Llanos C, Izmirly PM, Brock B, Copel J, Cummiskey K, Dooley MA, Foley J, Graves C, Hendershott C, et al. Evaluation of fetuses in a study of intravenous immunoglobulin as preventive therapy for congenital heart block: results of a multicenter, prospective, open-label clinical trial. Arthritis and Rheumatism 201062 1138–1146. (https://doi.org/10.1002/art.27308)

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kan N, Silverman ED, Kingdom J, Dutil N, Laskin C, Jaeggi E. Serial echocardiography for immune‐mediated heart disease in the fetus: results of a risk‐based prospective surveillance strategy. Prenatal Diagnosis 201737 375–382. (https://doi.org/10.1002/pd.5021)

    CAS  PubMed  Google Scholar 

  118. Nii M, Shimizu M, Roman KS, Konstantinov I, Li A, Redington AN, Jaeggi ET. Doppler tissue imaging in the assessment of atrioventricular conduction time: validation of a novel technique and comparison with electrophysiologic and pulsed wave Doppler-derived equivalents in an animal model. Journal of the American Society of Echocardiography 200619 314–321. (https://doi.org/10.1016/j.echo.2005.09.010)

    PubMed  Google Scholar 

  119. Pasquini L, Seale A, Belmar C, Oseku-Afful S, Thomas MJ, Taylor MJ, Roughton M, Gardiner HM. PR interval: a comparison of electrical and mechanical methods in the fetus. Early Human Development 201783 231–237. (https://doi.org/10.1016/j.earlhumdev.2006.05.020)

    Google Scholar 

  120. Jaeggi E, Laskin C, Hamilton R, Kingdom J, Silverman E. The importance of the level of maternal anti-Ro/SSA antibodies as a prognostic marker of the development of cardiac neonatal lupus erythematosus a prospective study of 186 antibody-exposed fetuses and infants. Journal of the American College of Cardiology 201055 2778–2784. (https://doi.org/10.1016/j.jacc.2010.02.042)

    CAS  PubMed  Google Scholar 

  121. McElhinney DB, Tworetzky W, Lock JE. Current status of fetal cardiac intervention. Circulation 2010121 1256–1263. (https://doi.org/10.1161/CIRCULATIONAHA.109.870246)

    PubMed  PubMed Central  Google Scholar 

  122. McElhinney DB, Marsall AC, Wilkins-Haug LE, Brown DW, Benson CB, Silva V, Marx GR, Mizrahi-Arnaud A, Lock JE, Tworetzky W. Predictors of technical success and postnatal biventricular outcome after in utero aortic valvuloplasty for aortic stenosis with evolving hypoplastic left heart syndrome. Circulation 2009120 1482–1490. (https://doi.org/10.1161/CIRCULATIONAHA.109.848994)

    PubMed  PubMed Central  Google Scholar 

  123. Hunter LE, Chubb H, Miller O, Sharland G, Simpson JM. Fetal aortic valve stenosis: a critique of case selection criteria for fetal intervention. Prenatal Diagnosis 201535 1176–1181. (https://doi.org/10.1002/pd.4661)

    PubMed  Google Scholar 

  124. Freud LR, McElhinney DB, Marshall AC, Marx GR, Friedman KG, Nido PJ, Emani SM, Lafranchi T, Silva V, Wilkins-Haug LE, Benson CB, Lock JE, Tworetzky W. Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients. Circulation 2014130 638–645. (https://doi.org/10.1161/CIRCULATIONAHA.114.009032)

    PubMed  PubMed Central  Google Scholar 

  125. Gardiner HM, Kovacevic A, Tulzer G, Sarkola T, Herberg U, Dangel J, Ohman A, Bartrons J, Carvalho JS, Jicinska H, et al. Natural history of 107 cases of fetal aortic stenosis from a European multicenter retrospective study. Ultrasound in Obstetrics and Gynecology 201648 373–381. (https://doi.org/10.1002/uog.15876)

    CAS  PubMed  Google Scholar 

  126. Burch M, Kaufman L, Archer N, Sullivan I. Persistent pulmonary hypertension late after neonatal aortic valvotomy: a consequence of an expanded surgical cohort. Heart 200490 918–920. (https://doi.org/10.1136/hrt.2003.024760)

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Robinson JD, Nido PJ, Geggel RL, Perez-Atayde AR, Lock JE, Powell AJ. Left ventricular diastolic heart failure in teenagers who underwent balloon aortic valvuloplasty in early infancy. American Journal of Cardiology 2010106 426–429. (https://doi.org/10.1016/j.amjcard.2010.03.045)

    Google Scholar 

  128. Friedman KG, Margossian R, Graham DA, Harrild DM, Emani SM, Wilkins-Haug LE, McElhinney DB, Tworetzky W. Postnatal left ventricular diastolic function after fetal aortic valvuloplasty. American Journal of Cardiology 2011108 556–560. (https://doi.org/10.1016/j.amjcard.2011.03.085)

    Google Scholar 

  129. Tulzer A, Arzt W, Gitter R, Prandsetter C, Grohmann E, Mair R, Tulzer G. Immediate effects and outcomes after in‐utero pulmonary valvuloplasty in fetuses with pulmonary atresia with intact septum or critical pulmonary stenosis. Ultrasound in Obstetrics and Gynecology 201852 230–237. (https://doi.org/10.1002/uog.19047)

    CAS  PubMed  Google Scholar 

  130. Marshall AC, Levine J, Morash D, Silva V, Lock JE, Benson CB, Wilkins-Haug LE, McElhinney DB, Tworetzky W. Results of in utero atrial septoplasty in fetuses with hypoplastic left heart syndrome. Prenatal Diagnosis 200828 1023–1028. (https://doi.org/10.1002/pd.2114)

    PubMed  Google Scholar 

  131. Chaturvedi RR, Ryan G, Seed M, Arsdell GV, Jaeggi ET. Fetal stenting of the atrial septum: technique and initial results in cardiac lesions with left atrial hypertension. International Journal of Cardiology 2013168 2029–2036. (https://doi.org/10.1016/j.ijcard.2013.01.173)

    PubMed  Google Scholar 

  132. Mawad W, Chaturvedi R, Ryan G, Jaeggi E. Percutaneous fetal atrial balloon septoplasty for simple transposition of the great arteries with an intact atrial septum. Canadian Journal of Cardiology 201834 342.e9–342.e11. (https://doi.org/10.1016/j.cjca.2017.12.010)

    Google Scholar 

  133. Hendler I, Blackwell SC, Bujold E, Treawell MC, Wolfe HM, Sokol RJ, Sorokin Y. The impact of maternal obesity on midtrimester sonographic visualization of fetal cardiac and craniospinal structures. International Journal of Obesity 200428 1607–1611. (https://doi.org/10.1038/sj.ijo.0802759)

    CAS  PubMed  Google Scholar 

  134. Bernardo S, Giancotti A, Antonelli A, Rizzo G, Vinci V, Pizzuti A, Catalano C, Manganaro L. MRI and US in the evaluation of fetal anomalies: the need to work together. Prenatal Diagnosis 201737 1343–1349. (https://doi.org/10.1002/pd.5181)

    CAS  PubMed  Google Scholar 

  135. Salomon LJ, Bernard JP, Millischer AE, Sonigo P, Brunelle F, Boddaert N, Ville Y. MRI and ultrasound fusion imaging for prenatal diagnosis. American Journal of Obstetrics and Gynecology 2013209 148.e1–148.e9. (https://doi.org/10.1016/j.ajog.2013.05.031)

    Google Scholar 

  136. Simpson JM. Speckle tracking for the assessment of fetal cardiac function. Ultrasound in Obstetrics and Gynecology 201137 133–134. (https://doi.org/10.1002/uog.8920)

    CAS  PubMed  Google Scholar 

  137. Geyer H, Caracciolo G, Abe H, Wilansky S, Carej S, Gentile F, Nesser HJJ, Khandheria B, Narula J, Sengupta PP. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. Journal of the American Society of Echocardiography 201023 351–369. (https://doi.org/10.1016/j.echo.2010.02.015)

    PubMed  Google Scholar 

  138. Matsui H, Germanakis I, Kulinskaya E, Gardiner HM. Temporal and spatial performance of vector velocity imaging in the human fetal heart. Ultrasound in Obstetrics and Gynecology 201137 150–157. (https://doi.org/10.1002/uog.8815)

    CAS  PubMed  Google Scholar 

  139. Li L, Craft M, Hsu HH, Zhang M, Klas B, Danford DA, Kutty S. Left ventricular rotational and twist mechanics in the human fetal heart. Journal of the American Society of Echocardiography 201730 773–780. (https://doi.org/10.1016/j.echo.2017.04.006)

    PubMed  Google Scholar 

  140. Shah AD, Border WL, Crombleholme TM, Michelfelder EC. Initial fetal cardiovascular profile score predicts recipient twin outcome in twin-twin transfusion syndrome. Journal of the American Society of Echocardiography 200821 1105–1108. (https://doi.org/10.1016/j.echo.2008.05.004)

    PubMed  PubMed Central  Google Scholar 

  141. Chan FY, Soong B, Watson D, Whitehall J. Realtime fetal ultrasound by telemedicine in Queensland. A successful venture? Journal of Telemedicine and Telecare 20017 7–11. (https://doi.org/10.1258/1357633011937290)

    PubMed  Google Scholar 

  142. McCrossan BA, Sands AJ, Kileen T, Cardwell CR, Casey FA. Fetal diagnosis of congenital heart disease by telemedicine. Archives of Disease in Childhood: Fetal and Neonatal Edition 201196 F394–F397. (https://doi.org/10.1136/adc.2010.197202)

    PubMed  Google Scholar 

  143. Michailidis GD, Simpson JM, Karidas C, Economides DL. Detailed three‐dimensional fetal echocardiography facilitated by an Internet link. Ultrasound in Obstetrics and Gynecology 200118 325–328. (https://doi.org/10.1046/j.0960-7692.2001.00520.x)

    CAS  PubMed  Google Scholar 

  144. Rocha LA, Rolo LC, Bello Barros FS, Nardozza LMM, Fernandes Moron A, Araujo Junior E. Assessment of quality of fetal heart views by 3D/4D ultrasonography using spatio‐temporal image correlation in the second and third trimesters of pregnancy. Echocardiography 201532 1015–1021. (https://doi.org/10.1111/echo.12743)

    PubMed  Google Scholar 

  145. Sharma S, Parness IA, Kamenir SA, Ko H, Haddow S, Steinberg LG, Lai WW. Screening fetal echocardiography by telemedicine: efficacy and community acceptance. Journal of the American Society of Echocardiography 200316 202–208. (https://doi.org/10.1067/mje.2003.46)

    PubMed  Google Scholar 

  146. Simpson JM. The role of telemedicine in a fetal cardiology service. Archives of Disease in Childhood: Fetal and Neonatal Edition 201196 F392–F393. (https://doi.org/10.1136/adc.2011.215806)

    PubMed  Google Scholar 

Download references

Funding

This work did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsey E. Hunter MBChB MRCPCH.

Rights and permissions

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.(http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hunter, L.E., Seale, A.N. EDUCATIONAL SERIES IN CONGENITAL HEART DISEASE: Prenatal diagnosis of congenital heart disease. Echo Res Pract 5, R81–R100 (2018). https://doi.org/10.1530/ERP-18-0027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-18-0027

Key Words

  • congenital heart disease
  • prenatal diagnosis
  • fetal cardiology
  • echocardiography