Skip to main content

Stress echocardiography in coronary artery disease: a practical guideline from the British Society of Echocardiography

Abstract

Stress echocardiography is an established technique for assessing coronary artery disease. It has primarily been used for the diagnosis and assessment of patients presenting with chest pain in whom there is an intermediate probability of coronary artery disease. In addition, it is used for risk stratification and to guide revascularisation in patients with known ischaemic heart disease. Although cardiac computed tomography has recently been recommended in the United Kingdom as the first-line investigation in patients presenting for the first time with atypical or typical angina, stress echocardiography continues to have an important role in the assessment of patients with lesions of uncertain functional significance and patients with known ischaemic heart disease who represent with chest pain. In this guideline from the British Society of Echocardiography, the indications and recommended protocols are outlined for the assessment of ischaemic heart disease by stress echocardiography.

References

  1. Bhattacharyya S, Chehab O, Khattar R, Lloyd G & Senior R & British Society of Echocardiography, on behalf of the British Society of E. Stress echocardiography in clinical practice: a United Kingdom National Health Service Survey on behalf of the British Society of Echocardiography. European Heart Journal Cardiovascular Imaging 2014 15 158–163. (https://doi.org/10.1093/ehjci/jet082)

    PubMed  Google Scholar 

  2. Shah BN, MacNab A, Lynch J, Hampson R, Senior R & Steeds RP & British Society of Echocardiography Stress Accreditation Committee. Stress echocardiography in contemporary clinical cardiology: practical considerations and accreditation. Echo Research and Practice 2018 5 E1–E6. (https://doi.org/10.1530/ERP-17-0032)

    PubMed  PubMed Central  Google Scholar 

  3. Thaden JJ, Tsang MY, Ayoub C, Padang R, Nkomo VT, Tucker SF, Cassidy CS, Bremer M, Kane GC & Pellikka PA. Association between echocardiography laboratory accreditation and the quality of imaging and reporting for valvular heart disease. Circulation: Cardiovascular Imaging 2017 10 e006140. (https://doi.org/10.1161/CIRCIMAGING.117.006140)

    Google Scholar 

  4. Nesto RW & Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. American Journal of Cardiology 1987 59 23C–30C. (https://doi.org/10.1016/0002-9149(87)90192-5)

    CAS  Google Scholar 

  5. Banerjee A, Newman DR, Van den Bruel A & Heneghan C. Diagnostic accuracy of exercise stress testing for coronary artery disease: a systematic review and meta-analysis of prospective studies. International Journal of Clinical Practice 2012 66 477–492. (https://doi.org/10.1111/j.1742-1241.2012.02900.x)

    CAS  PubMed  Google Scholar 

  6. Bouzas-Mosquera A, Peteiro J, Alvarez-Garcia N, Broullon FJ, Mosquera VX, Garcia-Bueno L, Ferro L, Castro-Beiras A. Prediction of mortality and major cardiac events by exercise echocardiography in patients with normal exercise electrocardiographic testing. Journal of the American College of Cardiology 2009 53 1981–1990. (https://doi.org/10.1016/j.jacc.2009.01.067)

    PubMed  Google Scholar 

  7. Panoulas VF, Keramida K, Boletti O, Papafaklis MI, Flessas D, Petropoulou M & Nihoyannopoulos P. Association between fractional flow reserve, instantaneous wave-free ratio and dobutamine stress echocardiography in patients with stable coronary artery disease. EuroIntervention 2018 13 1959–1966. (https://doi.org/10.4244/EIJ-D-17-00594)

    PubMed  Google Scholar 

  8. Neumann F-J, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet J-P, Falk V, Head SJ, et al. ESC/EACTS guidelines on myocardial revascularization. European Heart Journal 2019 2018 87–165. (https://doi.org/10.1093/eurheartj/ehy394)

    Google Scholar 

  9. National Institute for Health and Care Excellence. Chest pain of recent onset: assessment and diagnosis. London, UK: NICE, 2010. (available at: https://www.nice.org.uk/guidance/cg95)

    Google Scholar 

  10. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, Cole J, Dolor RJ, Fordyce CB, Huang M, et al. Outcomes of anatomical versus functional testing for coronary artery disease. New England Journal of Medicine 2015 372 1291–1300. (https://doi.org/10.1056/NEJMoa1415516)

    CAS  Google Scholar 

  11. Knuuti J, Ballo H, Juarez-Orozco LE, Saraste A, Kolh P, Rutjes AWS, Jüni P, Windecker S, Bax JJ & Wijns W. The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: a meta-analysis focused on post-test disease probability. European Heart Journal 2018 39 3322–3330. (https://doi.org/10.1093/eurheartj/ehy267)

    PubMed  Google Scholar 

  12. Shah BN, Balaji G, Alhajiri A, Ramzy IS, Ahmadvazir S & Senior R. Incremental diagnostic and prognostic value of contemporary stress echocardiography in a chest pain unit: mortality and morbidity outcomes from a real-world setting. Circulation: Cardiovascular Imaging 2013 6 202–209. (https://doi.org/10.1161/CIRCIMAGING.112.980797)

    Google Scholar 

  13. Cook DG & Shaper AG. Breathlessness, angina pectoris and coronary artery disease. American Journal of Cardiology 1989 63 921–924. (https://doi.org/10.1016/0002-9149(89)90140-9)

    CAS  Google Scholar 

  14. Argulian E, Agarwal V, Bangalore S, Chatteljee S, Makani H, Rozanski A & Chaudhry FA. Meta-analysis of prognostic implications of dyspnea versus chest pain in patients referred for stress testing. American Journal of Cardiology 2014 113 559–564. (https://doi.org/10.1016/j.amjcard.2013.10.019)

    Google Scholar 

  15. Argulian E, Halpern DG, Agarwal V, Agarwal SK & Chaudhry FA. Predictors of ischemia in patients referred for evaluation of exertional dyspnea: a stress echocardiography study. Journal of the American Society of Echocardiography 2013 26 72–76. (https://doi.org/10.1016/j.echo.2012.09.012)

    PubMed  Google Scholar 

  16. Kristensen SD, Knuuti J, Saraste A, Anker S, Bøtker HE, Hert SD, Ford I, Gonzalez-Juanatey JR, Gorenek B, Heyndrickx GR, et al. ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assessment and management. The Joint Task Force on non-cardiac surgery: cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). European Heart Journal 2014 35 2383–2431. (https://doi.org/10.1093/eurheartj/ehu282)

    PubMed  Google Scholar 

  17. Khan JN, Griffiths T, Fatima T, Michael L, Mihai A, Mustafa Z, Sandhu K, Butler R, Duckett S & Heatlie G. Feasibility of physiologist-led stress echocardiography for the assessment of coronary artery disease. Echo Research and Practice 2017 4 29–36. (https://doi.org/10.1530/ERP-17-0019)

    PubMed  PubMed Central  Google Scholar 

  18. Tsutsui JM, Elhendy A, Xie F, O’Leary EL, McGrain AC & Porter TR. Safety of dobutamine stress real-time myocardial contrast echocardiography. Journal of the American College of Cardiology 2005 45 1235–1242. (https://doi.org/10.1016/j.jacc.2005.01.024)

    CAS  PubMed  Google Scholar 

  19. Sicari R. Anti-ischemic therapy and stress testing: pathophysiologic, diagnostic and prognostic implications. Cardiovascular Ultrasound 2004 2 14. (https://doi.org/10.1186/1476-7120-2-14)

    PubMed  PubMed Central  Google Scholar 

  20. Senior R, Becher H, Monaghan M, Agati L, Zamorano J, Vanoverschelde JL, Nihoyannopoulos P, Edvardsen T, Lancellotti P. Clinical practice of contrast echocardiography: recommendation by the European Association of Cardiovascular Imaging (EACVI) 2017. European Heart Journal Cardiovascular Imaging 2017 18 1205–1205af. (https://doi.org/10.1093/ehjci/jex182)

    PubMed  Google Scholar 

  21. Dhond MR, Nguyen T, Whitley TB, Donnell K & Bommer WJ. Prognostic value of 12-lead electrocardiogram during dobutamine stress echocardiography. Echocardiography 2000 17 429–432. (https://doi.org/10.1111/j.1540-8175.2000.tb01158.x)

    CAS  PubMed  Google Scholar 

  22. Mahenthiran J, Bangalore S, Yao SS & Chaudhry FA. Comparison of prognostic value of stress echocardiography versus stress electrocardiography in patients with suspected coronary artery disease. American Journal of Cardiology 2005 96 628–634. (https://doi.org/10.1016/j.amjcard.2005.04.032)

    Google Scholar 

  23. Bouzas-Mosquera A, Peteiro J, Alvarez-Garcia N, Broullon FJ, Garcia-Bueno L, Ferro L, Perez R, Bouzas B, Fabregas R, Castro-Beiras A. Prognostic value of exercise echocardiography in patients with left bundle branch block. JACC: Cardiovascular Imaging 2009 2 251–259. (https://doi.org/10.1016/j.jcmg.2008.11.014)

    PubMed  Google Scholar 

  24. Porter TR, Mulvagh SL, Abdelmoneim SS, Becher H, Belcik JT, Bierig M, Choy J, Gaibazzi N, Gillam LD, Janardhanan R, et al. Clinical applications of ultrasonic enhancing agents in echocardiography: 2018 American Society of Echocardiography guidelines update. Journal of the American Society of Echocardiography 2018 31 241–274. (https://doi.org/10.1016/j.echo.2017.11.013)

    PubMed  Google Scholar 

  25. Park TH, Tayan N, Takeda K, Jeon HK, Quinones MA & Zoghbi WA. Supine bicycle echocardiography improved diagnostic accuracy and physiologic assessment of coronary artery disease with the incorporation of intermediate stages of exercise. Journal of the American College of Cardiology 2007 50 1857–1863. (https://doi.org/10.1016/j.jacc.2007.05.053)

    PubMed  Google Scholar 

  26. Karagiannis SE, Bax JJ, Elhendy A, Feringa HH, Cokkinos DV, van Domburg R, Simoons M & Poldermans D. Enhanced sensitivity of dobutamine stress echocardiography by observing wall motion abnormalities during the recovery phase after acute beta-blocker administration. American Journal of Cardiology 2006 97 462–465. (https://doi.org/10.1016/j.amjcard.2005.09.075)

    CAS  Google Scholar 

  27. Badruddin SM, Ahmad A, Mickelson J, Abukhalil J, Winters WL, Nagueh SF & Zoghbi WA. Supine bicycle versus post-treadmill exercise echocardiography in the detection of myocardial ischemia: a randomized single-blind crossover trial. Journal of the American College of Cardiology 1999 33 1485–1490. (https://doi.org/10.1016/S0735-1097(99)00043-1)

    CAS  PubMed  Google Scholar 

  28. Peteiro J, Bouzas-Mosquera A, Estevez R, Pazos P, Pineiro M, Castro-Beiras A. Head-to-head comparison of peak supine bicycle exercise echocardiography and treadmill exercise echocardiography at peak and at post-exercise for the detection of coronary artery disease. Journal of the American Society of Echocardiography 2012 25 319–326. (https://doi.org/10.1016/j.echo.2011.11.002)

    PubMed  Google Scholar 

  29. Makani H, Bangalore S, Halpern D, Makwana HG & Chaudhry FA. Cardiac outcomes with submaximal normal stress echocardiography: a meta-analysis. Journal of the American College of Cardiology 2012 60 1393–1401. (https://doi.org/10.1016/j.jacc.2012.05.041)

    PubMed  Google Scholar 

  30. McCully RB, Roger VL, Mahoney DW, Karon BL, Oh JK, Miller FA Jr, Seward JB & Pellikka PA. Outcome after normal exercise echocardiography and predictors of subsequent cardiac events: follow-up of 1,325 patients. Journal of the American College of Cardiology 1998 31 144–149. (https://doi.org/10.1016/S0735-1097(97)00427-0)

    CAS  PubMed  Google Scholar 

  31. Arruda-Olson AM, Juracan EM, Mahoney DW, McCully RB, Roger VL & Pellikka PA. Prognostic value of exercise echocardiographyin 5,798 patients: is there a gender difference? Journal of the American College of Cardiology 2002 39 625–631. (https://doi.org/10.1016/S0735-1097(01)01801-0)

    PubMed  Google Scholar 

  32. Nalawadi SS, Tolstrup K, Cuk O, Shiota T, Gurudevan SV & Siegel RJ & Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California. Atropine as an adjunct to supine bicycle stress echocardiography: an alternative strategy to achieve target heart rate or rate pressure product. European Heart Journal Cardiovascular Imaging 2012 13 612–616. (https://doi.org/10.1093/ejechocard/jer268)

    PubMed  Google Scholar 

  33. Ling LH, Pellikka PA, Mahoney DW, Oh JK, McCully RB, Roger VL & Seward JB. Atropine augmentation in dobutamine stress echocardiography: role and incremental value in a clinical practice setting. Journal of the American College of Cardiology 1996 28 551–557. (https://doi.org/10.1016/0735-1097(96)00195-7)

    CAS  PubMed  Google Scholar 

  34. Dolan MS, Gala SS, Dodla S, Abdelmoneim SS, Xie F, Cloutier D, Bierig M, Mulvagh SL, Porter TR & Labovitz AJ. Safety and efficacy of commercially available ultrasound contrast agents for rest and stress echocardiography a multicenter experience. Journal of the American College of Cardiology 2009 53 32–38. (https://doi.org/10.1016/j.jacc.2008.08.066)

    CAS  PubMed  Google Scholar 

  35. Ntoskas T, Ahmad F & Woodmansey P. Safety and efficacy of physiologist-led dobutamine stress echocardiography: experience from a tertiary cardiac centre. Echo Research and Practice 2018 5 105–112. (https://doi.org/10.1530/ERP-18-0038)

    PubMed  PubMed Central  Google Scholar 

  36. Leong-Poi H, Rim SJ, Le DE, Fisher NG, Wei K & Kaul S. Perfusion versus function: the ischemic cascade in demand ischemia: implications of single-vessel versus multivessel stenosis. Circulation 2002 105 987–992. (https://doi.org/10.1161/hc0802.104326)

    PubMed  Google Scholar 

  37. Porter TR, Smith LM, Wu J, Thomas D, Haas JT, Mathers DH, Williams E, Olson J, Nalty K, Hess R, et al. Patient outcome following 2 different stress imaging approaches: a prospective randomized comparison. Journal of the American College of Cardiology 2013 61 2446–2455. (https://doi.org/10.1016/j.jacc.2013.04.019)

    PubMed  Google Scholar 

  38. Miszalski-Jamka T, Kuntz-Hehner S, Schmidt H, Peter D, Miszalski-Jamka K, Hammerstingl C, Tiemann K, Ghanem A, Troatz C, Pasowicz M, et al. Myocardial contrast echocardiography enhances long-term prognostic value of supine bicycle stress two-dimensional echocardiography. Journal of the American Society of Echocardiography 2009 22 1220–1227. (https://doi.org/10.1016/j.echo.2009.07.020)

    PubMed  Google Scholar 

  39. Hayat SA, Dwivedi G, Jacobsen A, Lim TK, Kinsey C & Senior R. Effects of left bundle-branch block on cardiac structure, function, perfusion, and perfusion reserve: implications for myocardial contrast echocardiography versus radionuclide perfusion imaging for the detection of coronary artery disease. Circulation 2008 117 1832–1841. (https://doi.org/10.1161/CIRCULATIONAHA.107.726711)

    CAS  PubMed  Google Scholar 

  40. Abdelmoneim SS, Mulvagh SL, Xie F, O’Leary E, Adolphson M, Omer MA, Nhola LF, Huang R, Warta SJ, Kirby B, et al. Regadenoson stress real-time myocardial perfusion echocardiography for detection of coronary artery disease: feasibility and accuracy of two different ultrasound contrast agents. Journal of the American Society of Echocardiography 2015 28 1393–1400. (https://doi.org/10.1016/j.echo.2015.08.011)

    PubMed  Google Scholar 

  41. Mattoso AAA, Kowatsch I, Tsutsui JM, de la Cruz VY, Ribeiro HB, Sbano JCN, Ramires JAF, Kalil Filho R, Porter TR, Mathias W Jr. Prognostic value of qualitative and quantitative vasodilator stress myocardial perfusion echocardiography in patients with known or suspected coronary artery disease. Journal of the American Society of Echocardiography 2013 26 539–547. (https://doi.org/10.1016/j.echo.2013.01.016)

    PubMed  Google Scholar 

  42. Gould KL, Lipscomb K & Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. American Journal of Cardiology 1974 33 87–94. (https://doi.org/10.1016/0002-9149(74)90743-7)

    CAS  Google Scholar 

  43. Michelsen MM, Mygind ND, Pena A, Olsen RH, Christensen TE, Ghotbi AA, Hasbak P, Kjaer A, Gustafsson I, Hansen PR, et al. Transthoracic Doppler echocardiography compared with positron emission tomography for assessment of coronary microvascular dysfunction: the iPOWER study. International Journal of Cardiology 2017 228 435–443. (https://doi.org/10.1016/j.ijcard.2016.11.004)

    PubMed  Google Scholar 

  44. Rigo F, Sicari R, Gherardi S, Djordjevic-Dikic A, Cortigiani L & Picano E. The additive prognostic value of wall motion abnormalities and coronary flow reserve during dipyridamole stress echo. European Heart Journal 2008 29 79–88. (https://doi.org/10.1093/eurheartj/ehm527)

    PubMed  Google Scholar 

  45. Gan LM, Svedlund S, Wittfeldt A, Eklund C, Gao SS, Matejka G, Jeppsson A, Albertsson P, Omerovic E & Lerman A. Incremental value of transthoracic Doppler echocardiography-assessed coronary flow reserve in patients With suspected myocardial ischemia undergoing myocardial perfusion scintigraphy. Journal of the American Heart Association 2017 6 8. (https://doi.org/10.1161/JAHA.116.004875)

    Google Scholar 

  46. Sicari R, Rigo F, Glierardi S, Galderisi M, Cortigiani L & Picano E. The prognostic value of Doppler echocardiographic-derived coronary flow reserve is not affected by concomitant antiischemic therapy at the time of testing. American Heart Journal 2008 156 573–579. (https://doi.org/10.1016/j.ahj.2008.04.016)

    PubMed  Google Scholar 

  47. Hyodo E, Hirata K, Hirose M, Sakanoue Y, Nishida Y, Arai K, Kawarabayashi T, Shimada K, Hozumi T, Muro T, et al. Detection of restenosis after percutaneous coronary intervention in three major coronary arteries by transthoracic Doppler echocardiography. Journal of the American Society of Echocardiography 2010 23 553–559. (https://doi.org/10.1016/j.echo.2010.03.007)

    PubMed  Google Scholar 

  48. Olsen RH, Pedersen LR, Snoer M, Christensen TE, Ghotbi AA, Hasbak P, Kjaer A, Haugaard SB & Prescott E. Coronary flow velocity reserve by echocardiography: feasibility, reproducibility and agreement with PET in overweight and obese patients with stable and revascularized coronary artery disease. Cardiovascular Ultrasound 2016 14 22. (https://doi.org/10.1186/s12947-016-0066-3)

    PubMed  PubMed Central  Google Scholar 

  49. Gaibazzi N, Rigo F, Lorenzoni V, Molinaro S, Bartolomucci F, Reverberi C & Marwick TH. Comparative prediction of cardiac events by wall motion, wall motion plus coronary flow reserve, or myocardial perfusion analysis: a multicenter study of contrast stress echocardiography. JACC: Cardiovascular Imaging 2013 6 1–12. (https://doi.org/10.1016/j.jcmg.2012.08.009)

    PubMed  Google Scholar 

  50. Edvardsen T, Aakhus S, Endresen K, Bjomerheim R, Smiseth OA & Ihlen H. Acute regional myocardial ischemia identified by 2-dimensional multiregion tissue Doppler imaging technique. Journal of the American Society of Echocardiography 2000 13 986–994. (https://doi.org/10.1067/mje.2000.108466)

    CAS  PubMed  Google Scholar 

  51. Kukulski T, Jamal F, Herbots L, D’Hooge J, Bijnens B, Hatle L, De Scheerder I & Sutherland GR. Identification of acutely ischemic myocardium using ultrasonic strain measurements. A clinical study in patients undergoing coronary angioplasty. Journal of the American College of Cardiology 2003 41 810–819. (https://doi.org/10.1016/S0735-1097(02)02934-0)

    PubMed  Google Scholar 

  52. Skulstad H, Edvardsen T, Urheim S, Rabben SI, Stugaard M, Lyseggen E, Ihlen H & Smiseth OA. Postsystolic shortening in ischemic myocardium: active contraction or passive recoil? Circulation 2002 106 718–724. (https://doi.org/10.1161/01.CIR.0000024102.55150.B6)

    PubMed  Google Scholar 

  53. Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U, Platsch G, Kuwert T, Daniel WG & Flachskampf FA. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 2003 107 2120–2126. (https://doi.org/10.1161/01.CIR.0000065249.69988.AA)

    PubMed  Google Scholar 

  54. Davidavicius G, Kowalski M, Williams RI, D’hooge J, Di Salvo G, Pierre-Justin G, Claus P, Rademakers F, Herregods MC, Fraser AG, et al. Can regional strain and strain rate measurement be performed during both dobutamine and exercise echocardiography, and do regional deformation responses differ with different forms of stress testing? Journal of the American Society of Echocardiography 2003 16 299–308. (https://doi.org/10.1016/S0894-7317(02)74428-3)

    PubMed  Google Scholar 

  55. Uusitalo V, Luotolahti M, Pietila M, Wendelin-Saarenhovi M, Hartiala J, Saraste M, Knuuti J & Saraste A. Two-dimensional speckle-tracking during dobutamine stress echocardiography in the detection of myocardial ischemia in patients with suspected coronary artery disease. Journal of the American Society of Echocardiography 2016 29 470–479.e3. (https://doi.org/10.1016/j.echo.2015.12.013)

    PubMed  Google Scholar 

  56. Smiseth OA, Torp H, Opdahl A, Haugaa KH & Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? European Heart Journal 2016 37 1196–1207. (https://doi.org/10.1093/eurheartj/ehv529)

    PubMed  Google Scholar 

  57. Gibby C, Wiktor DM, Burgess M, Kusunose K & Marwick TH. Quantitation of the diastolic stress test: filling pressure vs. diastolic reserve. European Heart Journal Cardiovascular Imaging 2013 14 223–227. (https://doi.org/10.1093/ehjci/jes078)

    PubMed  Google Scholar 

  58. Aggeli C, Giannopoulos G, Misovoulos P, Roussakis G, Christoforatou E, Kokkinakis C, Brili S & Stefanadis C. Real-time three-dimensional dobutamine stress echocardiography for coronary artery disease diagnosis: validation with coronary angiography. Heart 2007 93 672–675. (https://doi.org/10.1136/hrt.2006.101220)

    PubMed  Google Scholar 

  59. Ahmad M, Xie TR, McCulloch M, Abreo G & Runge M. Real-time three-dimensional dobutamine stress echocardiography in assessment of ischemia: comparison with two-dimensional dobutamine stress echocardiography. Journal of the American College of Cardiology 2001 37 1303–1309. (https://doi.org/10.1016/S0735-1097(01)01159-7)

    CAS  PubMed  Google Scholar 

  60. Yoshitani H, Takeuchi M, Mor-Avi V, Otsuji Y, Hozumi T & Yoshiyama M. Comparative diagnostic accuracy of multiplane and multislice three-dimensional dobutamine stress echocardiography in the diagnosis of coronary artery disease. Journal of the American Society of Echocardiography 2009 22 437–442. (https://doi.org/10.1016/j.echo.2009.02.005)

    PubMed  Google Scholar 

  61. Eroglu E, D’Hooge J, Herbots L, Thijs D, Dubois C, Sinnaeve P, Dens J, Vanhaecke J & Rademakers F. Comparison of real-time tri-plane and conventional 2D dobutamine stress echocardiography for the assessment of coronary artery disease. European Heart Journal 2006 27 1719–1724. (https://doi.org/10.1093/eurheartj/ehl023)

    PubMed  Google Scholar 

  62. Varnero S, Santagata P, Pratali L, Basso M, Gandolfo A & Bellotti P. Head to head comparison of 2D vs real time 3D dipyridamole stress echocardiography. Cardiovascular Ultrasound 2008 6 31. (https://doi.org/10.1186/1476-7120-6-31)

    PubMed  PubMed Central  Google Scholar 

  63. Matsumura Y, Hozumi T, Arai K, Sugioka K, Ujino K, Takemoto Y, Yamagishi H, Yoshiyama M & Yoshikawa J. Non-invasive assessment of myocardial ischaemia using new real-time three-dimensional dobutamine stress echocardiography: comparison with conventional two-dimensional methods. European Heart Journal 2005 26 1625–1632. (https://doi.org/10.1093/eurheartj/ehi194)

    PubMed  Google Scholar 

  64. Pulerwitz T, Hirata K, Abe Y, Otsuka R, Herz S, Okajima K, Jin Z, Di Tullio MR & Homma S. Feasibility of using a real-time 3-dimensional technique for contrast dobutamine stress echocardiography. Journal of the American Society of Echocardiography 2006 19 540–545. (https://doi.org/10.1016/j.echo.2005.12.006)

    PubMed  Google Scholar 

  65. Takeuchi M, Otani S, Weinert L, Spencer KT & Lang RM. Comparison of contrast-enhanced real-time live 3-dimensional dobutamine stress echocardiography with contrast 2-dimensional echocardiography for detecting stress-induced wall-motion abnormalities. Journal of the American Society of Echocardiography 2006 19 294–299. (https://doi.org/10.1016/j.echo.2005.10.008)

    PubMed  Google Scholar 

Download references

Funding

This work did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Steeds.

Additional information

R P Steeds, R Wheeler, P Nihoyannopoulos, R Senior, M J Monaghan and V Sharma are members of the editorial board of Echo Research and Practice. They were not involved in the review or editorial process for this paper, on which they are listed as authors

Rights and permissions

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.(http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steeds, R.P., Wheeler, R., Bhattacharyya, S. et al. Stress echocardiography in coronary artery disease: a practical guideline from the British Society of Echocardiography. Echo Res Pract 6, G17–G33 (2019). https://doi.org/10.1530/ERP-18-0068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-18-0068

Key Words

  • stress echocardiography
  • coronary artery disease
  • exercise
  • pharmacological stress
  • myocardial perfusion
  • 3D echocardiography
  • left ventricular opacification contrast