Skip to main content

Echocardiographic assessment of myocardial function and mechanics during veno-venous extracorporeal membrane oxygenation

Abstract

Background: Transthoracic echocardiography (TTE) plays a fundamental role in the management of patients supported with extra-corporeal membrane oxygenation (ECMO). In light of fluctuating clinical states, serial monitoring of cardiac function is required. Formal quantification of ventricular parameters and myocardial mechanics offer benefit over qualitative assessment. The aim of this research was to compare unenhanced (UE) versus contrast-enhanced (CE) quantification of myocardial function and mechanics during ECMO in a validated ovine model.

Methods: Twenty-four sheep were commenced on peripheral veno-venous ECMO. Acute smoke-induced lung injury was induced in 21 sheep (3 controls). CE-TTE with Definity using Cadence Pulse Sequencing was performed. Two readers performed image analysis with TomTec Arena. End diastolic area (EDA, cm2), end systolic area (ESA, cm2), fractional area change (FAC, %), endocardial global circumferential strain (EGCS, %), myocardial global circumferential strain (MGCS, %), endocardial rotation (ER, degrees) and global radial strain (GRD, %) were evaluated for UE-TTE and CE-TTE.

Results: Full data sets are available in 22 sheep (92%). Mean CE EDA and ESA were significantly larger than in unenhanced images. Mean FAC was almost identical between the two techniques. There was no significant difference between UE and CE EGCS, MGCS and ER. There was significant difference in GRS between imaging techniques. Unenhanced inter-observer variability was from 0.48–0.70 but significantly improved to 0.71–0.89 for contrast imaging in all echocardiographic parameters.

Conclusion: Semi-automated methods of myocardial function and mechanics using CE-TTE during ECMO was feasible and similar to UE-TTE for all parameters except ventricular areas and global radial strain. Addition of contrast significantly decreased inter-observer variability of all measurements.

References

  1. Abrams D, Combes A & Brodie D. Extracorporeal membrane oxygenation in cardiopulmonary disease in adults. Journal of the American College of Cardiology 2014 63 2769–2778. (https://doi.org/10.1016/j.jacc.2014.03.046)

    PubMed  Google Scholar 

  2. Lafçı G, Budak AB, Yener AÜ & Cicek OF. Use of extracorporeal membrane oxygenation in adults. Heart, Lung and Circulation 2014 23 10–23. (https://doi.org/10.1016/j.hlc.2013.08.009)

    Google Scholar 

  3. Shekar K, Mullany DV, Thomson B, Ziegenfuss M, Platts DG & Fraser JF. Extracorporeal life support devices and strategies for management of acute cardiorespiratory failure in adult patients: a comprehensive review. Critical Care 2014 18 219. (https://doi.org/10.1186/cc13865)

    PubMed  PubMed Central  Google Scholar 

  4. Tabak B, Elliott CL, Mahnke CB, Tanaka LY & Ogino MT. Transthoracic echocardiography visualization of bicaval dual lumen catheters for veno-venous extracorporeal membrane oxygenation. Journal of Clinical Ultrasound 2012 40 183–186. (https://doi.org/10.1002/jcu.21873)

    PubMed  Google Scholar 

  5. Platts DG, Sedgwick JF, Burstow DJ, Mullany DV & Fraser JF. The role of echocardiography in the management of patients supported by extracorporeal membrane oxygenation. Journal of the American Society of Echocardiography 2012 25 131–141. (https://doi.org/10.1016/j.echo.2011.11.009)

    PubMed  Google Scholar 

  6. Dolch ME, Frey L, Buerkle MA, Weig T, Wassilowsky D & Irlbeck M. Transesophageal echocardiography-guided technique for extracorporeal membrane oxygenation dual-lumen catheter placement. ASAIO Journal 2011 57 341–343. (https://doi.org/10.1097/MAT.0b013e3182179aae)

    PubMed  Google Scholar 

  7. Thomas TH, Price R, Ramaciotti C, Thompson M, Megison S & Lemler MS. Echocardiography, not chest radiography, for evaluation of cannula placement during pediatric extracorporeal membrane oxygenation. Pediatric Critical Care Medicine 2009 10 56–59. (https://doi.org/10.1097/PCC.0b013e3181937409)

    PubMed  Google Scholar 

  8. Domico M & Chang A. ECHO for ECMO: not just for cardiac function. Pediatric Critical Care Medicine 2009 10 138. (https://doi.org/10.1097/PCC.0b013e318193784d)

    PubMed  Google Scholar 

  9. Makaryus AN, Zubrow ME, Gillam LD, Michelakis N, Phillips L, Ahmed S, Friedman D, Sison C, Kort S, Rosman D, et al. Contrast echocardiography improves the diagnostic yield of transthoracic studies performed in the intensive care setting by novice sonographers. Journal of the American Society of Echocardiography 2005 18 475–480. (https://doi.org/10.1016/j.echo.2004.10.004)

    PubMed  Google Scholar 

  10. Costa JM, Tsutsui JM, Nozawa E, Morhy SS, Andrade JL, Ramires JF & Mathias W Jr. Contrast echocardiography can save nondiagnostic exams in mechanically ventilated patients. Echocardiography 2005 22 389–394. (https://doi.org/10.1111/j.1540-8175.2005.03176.x)

    PubMed  Google Scholar 

  11. Yong Y, Wu D, Fernandes V, Kopelen HA, Shimoni S, Nagueh SF, Callahan JD, Bruns DE, Shaw LJ, Quinones MA, et al. Diagnostic accuracy and cost-effectiveness of contrast echocardiography on evaluation of cardiac function in technically very difficult patients in the intensive care unit. American Journal of Cardiology 2002 89 711–718. (https://doi.org/10.1016/S0002-9149(01)02344-X)

    Google Scholar 

  12. Nguyen TT, Dhond MR, Sabapathy R & Bommer WJ. Contrast microbubbles improve diagnostic yield in ICU patients with poor echocardiographic windows. Chest 2001 120 1287–1292. (https://doi.org/10.1378/chest.120.4.1287)

    CAS  PubMed  Google Scholar 

  13. Daniel GK, Chawla MK, Sawada SG, Gradus-Pizlo I, Feigenbaum H & Segar DS. Echocardiographic imaging of technically difficult patients in the intensive care unit: use of Optison in combination with fundamental and harmonic imaging. Journal of the American Society of Echocardiography 2001 14 917–920. (https://doi.org/10.1067/mje.2001.113003)

    CAS  PubMed  Google Scholar 

  14. Reilly JP, Tunick PA, Timmermans RJ, Stein B, Rosenzweig BP & Kronzon I. Contrast echocardiography clarifies uninterpretable wall motion in intensive care unit patients. Journal of the American College of Cardiology 2000 35 485–490. (https://doi.org/10.1016/S0735-1097(99)00558-6)

    CAS  PubMed  Google Scholar 

  15. Kornbluth M, Liang DH, Brown P, Gessford E & Shnittger I. Contrast echocardiography is superior to tissue harmonics for assessment of left ventricular function in mechanically ventilated patients. American Heart Journal 2000 140 291–296. (https://doi.org/10.1067/mhj.2000.107175)

    CAS  PubMed  Google Scholar 

  16. Cohen JL, Cheirif J, Segar DS, Gillam LD, Gottdiener JS, Hausnerova E & Bruns DE. Improved left ventricular endocardial border delineation and opacification with Optison (FS069), a new echocardiographic contrast agent: results of a phase III multicenter trial. Journal of the American College of Cardiology 1998 32 746–752. (https://doi.org/10.1016/S0735-1097(98)00311-8)

    CAS  PubMed  Google Scholar 

  17. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography 2015 28 1.e14–39.e14. (https://doi.org/10.1016/j.echo.2014.10.003)

    Google Scholar 

  18. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography 2016 29 277–314. (https://doi.org/10.1016/j.echo.2016.01.011)

    PubMed  Google Scholar 

  19. Collier P, Phelan D & Klein A. A test in context: myocardial strain measured by speckle-tracking echocardiography. Journal of the American College of Cardiology 2017 69 1043–1056. (https://doi.org/10.1016/j.jacc.2016.12.012)

    PubMed  Google Scholar 

  20. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Journal of the American Society of Echocardiography 2011 24 277–313. (https://doi.org/10.1016/j.echo.2011.01.015)

    PubMed  Google Scholar 

  21. Blessberger H & Binder T. Non-invasive imaging: Two dimensional speckle tracking echocardiography: basic principles. Heart 2010 96 716–722. (https://doi.org/10.1136/hrt.2007.141002)

    PubMed  Google Scholar 

  22. Australian Government Offices. Australian Code of Practice for the Care and Use of Animals for Scientific Purposes. Canberra, Australia: National Health and Medical Research Council, 2013.

    Google Scholar 

  23. Shekar K, Fung YL, Diab S, Mullany DV, McDonald CI, Dunster KR, Fisquet S, Platts DG, Stewart D, Wallis SC, et al. Development of simulated and ovine models of extracorporeal life support to improve understanding of circuit-host interactions. Critical Care and Resuscitation 2012 14 105–111.

    PubMed  Google Scholar 

  24. Riedel T, Fraser JF, Dunster K, Fitzgibbon J & Schibler A. Effect of smoke inhalation on viscoelastic properties and ventilation distribution in sheep. Journal of Applied Physiology 2006 101 763–770. (https://doi.org/10.1152/japplphysiol.01635.2005)

    PubMed  Google Scholar 

  25. Senior R, Becher H, Monaghan M, Agati L, Zamorano J, Vanoverschelde JL & Nihoyannopoulos P. Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. European Journal of Echocardiography 2009 10 194–212. (https://doi.org/10.1093/ejechocard/jep005)

    PubMed  Google Scholar 

  26. Chahal NS & Senior R. Clinical applications of left ventricular opacification. JACC: Cardiovascular Imaging 2010 3 188–196. (https://doi.org/10.1016/j.jcmg.2009.09.022)

    PubMed  Google Scholar 

  27. Kurt M, Shaikh KA, Peterson L, Kurrelmeyer KM, Shah G, Nagueh SF, Fromm R, Quinones MA & Zoghbi WA. Impact of contrast echocardiography on evaluation of ventricular function and clinical management in a large prospective cohort. Journal of the American College of Cardiology 2009 53 802–810. (https://doi.org/10.1016/j.jacc.2009.01.005)

    PubMed  Google Scholar 

  28. Jenkins C, Moir S, Chan J, Rakhit D, Haluska B & Marwick TH. Left ventricular volume measurement with echocardiography: a comparison of left ventricular opacification, three-dimensional echocardiography, or both with magnetic resonance imaging. European Heart Journal 2009 30 98–106. (https://doi.org/10.1093/eurheartj/ehn484)

    PubMed  Google Scholar 

  29. Malm S, Frigstad S, Sagberg E, Steen PA & Skjarpe T. Real-time simultaneous triplane contrast echocardiography gives rapid, accurate, and reproducible assessment of left ventricular volumes and ejection fraction: a comparison with magnetic resonance imaging. Journal of the American Society of Echocardiography 2006 19 1494–1501. (https://doi.org/10.1016/j.echo.2006.06.021)

    PubMed  Google Scholar 

  30. Hoffmann R, von Bardeleben S, Barletta G, Pasques A, Kasprzak J, Greis C & Becher H. Comparison of two- and three-dimensional unenhanced and contrast-enhanced echocardiographies versus cineventriculography versus cardiac magnetic resonance for determination of left ventricular function. American Journal of Cardiology 2014 113 395–401. (https://doi.org/10.1016/j.amjcard.2013.09.038)

    Google Scholar 

  31. Hoffmann R, von Bardeleben S, ten Cate F, Borges AC, Kasprzak J, Firschke C, Lafitte S, Al-Saadi N, Kuntz-Hehner S, Engelhardt M, et al. Assessment of systolic left ventricular function: a multi-centre comparison of cineventriculography, cardiac magnetic resonance imaging, unenhanced and contrast-enhanced echocardiography. European Heart Journal 2005 26 607–616. (https://doi.org/10.1093/eurheartj/ehi083)

    PubMed  Google Scholar 

  32. Yu EH, Sloggett CE, Iwanochko RM, Rakowski H & Siu SC. Feasibility and accuracy of left ventricular volumes and ejection fraction determination by fundamental, tissue harmonic, and intravenous contrast imaging in difficult-to-image patients. Journal of the American Society of Echocardiography 2000 13 216–224. (https://doi.org/10.1067/mje.2000.103597)

    CAS  PubMed  Google Scholar 

  33. Choi EY, Rosen BD, Fernandes VR, Yan RT, Yoneyama K, Donekal S, Opdahl A, Almeida AL, Wu CO, Gomes AS, et al. Prognostic value of myocardial circumferential strain for incident heart failure and cardiovascular events in asymptomatic individuals: the Multi-Ethnic Study of Atherosclerosis. European Heart Journal 2013 34 2354–2361. (https://doi.org/10.1093/eurheartj/eht133)

    PubMed  PubMed Central  Google Scholar 

  34. Delgado-Montero A, Tayal B, Goda A, Ryo K, Marek JJ, Sugahara M, Qi Z, Althouse AD, Saba S, Schwartzman D, et al. Additive prognostic value of echocardiographic global longitudinal and global circumferential strain to electrocardiographic criteria in patients With heart failure undergoing cardiac resynchronization therapy. Circulation: Cardiovascular Imaging 2016 9 e004241. (https://doi.org/10.1161/CIRCIMAGING.115.004241)

    Google Scholar 

  35. Hung CL, Verma A, Uno H, Shin SH, Bourgoun M, Hassanein AH, McMurray JJ, Velazquez EJ, Kober L, Pfeffer MA, et al. Longitudinal and circumferential strain rate, left ventricular remodeling, and prognosis after myocardial infarction. Journal of the American College of Cardiology 2010 56 1812–1822. (https://doi.org/10.1016/j.jacc.2010.06.044)

    PubMed  Google Scholar 

  36. Cho GY, Marwick TH, Kim HS, Kim MK, Hong KS & Oh DJ. Global 2-dimensional strain as a new prognosticator in patients with heart failure. Journal of the American College of Cardiology 2009 54 618–624. (https://doi.org/10.1016/j.jacc.2009.04.061)

    PubMed  Google Scholar 

  37. Buckberg G, Hoffman JI, Mahajan A, Saleh S & Coghlan C. Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation 2008 118 2571–2587. (https://doi.org/10.1161/CIRCULATIONAHA.107.754424)

    PubMed  Google Scholar 

  38. Ho SY. Anatomy and myoarchitecture of the left ventricular wall in normal and in disease. European Journal of Echocardiography 2009 10 iii3–iii7. (https://doi.org/10.1093/ejechocard/jep159)

    PubMed  Google Scholar 

  39. Sengupta PP, Korinek J, Belohlavek M, Narula J, Vannan MA, Jahangir A & Khandheria BK. Left ventricular structure and function: basic science for cardiac imaging. Journal of the American College of Cardiology 2006 48 1988–2001. (https://doi.org/10.1016/j.jacc.2006.08.030)

    PubMed  Google Scholar 

  40. Yingchoncharoen T, Agarwal S, Popović ZB & Marwick TH. Normal ranges of left ventricular strain: a meta-analysis. Journal of the American Society of Echocardiography 2013 26 185–191. (https://doi.org/10.1016/j.echo.2012.10.008)

    PubMed  Google Scholar 

  41. Oxborough D, George K & Birch KM. Intraobserver reliability of two-dimensional ultrasound derived strain imaging in the assessment of the left ventricle, right ventricle, and left atrium of healthy human hearts. Echocardiography 2012 29 793–802. (https://doi.org/10.1111/j.1540-8175.2012.01698.x)

    PubMed  Google Scholar 

  42. Risum N, Ali S, Olsen NT, Jons C, Khouri MG, Lauridsen TK, Samad Z, Velazquez EJ, Sogaard P & Kisslo J. Variability of global left ventricular deformation analysis using vendor dependent and independent two-dimensional speckle-tracking software in adults. Journal of the American Society of Echocardiography 2012 25 1195–1203. (https://doi.org/10.1016/j.echo.2012.08.007)

    PubMed  Google Scholar 

  43. Cheng S, Larson MG, McCabe EL, Osypiuk E, Lehman BT, Stanchev P, Aragam J, Benjamin EJ, Solomon SD & Vasan RS. Reproducibility of speckle-tracking-based strain & measures of left ventricular function in community-based study. Journal of the American Society of Echocardiography 2013 26 1258.e2–1266.e2. (https://doi.org/10.1016/j.echo.2013.07.002)

    Google Scholar 

  44. Moen CA, Salminen PR, Dahle GO, Hjertaas JJ, Grong K & Matre K. Multi-layer radial systolic strain vs. one-layer strain for confirming reperfusion from a significant non-occlusive coronary stenosis. European Heart Journal Cardiovascular Imaging 2013 14 24–37. (https://doi.org/10.1093/ehjci/jes082)

    PubMed  Google Scholar 

  45. Rösner A, How OJ, Aarsæther E, Stenberg TA, Andreasen T, Kondratiev TV, Larsen TS & Myrmel T. High resolution speckle tracking dobutamine stress echocardiography reveals heterogeneous responses in different myocardial layers: implication for viability assessments. Journal of the American Society of Echocardiography 2010 23 439–447. (https://doi.org/10.1016/j.echo.2009.12.023)

    PubMed  Google Scholar 

  46. Malm S, Frigstad S, Stoylen A, Topr H, Sagberg E & Skjarpe T. Effects of ultrasound contrast During tissue velocity imaging on regional left ventricular velocity, strain, and strain rate measurements. Journal of the American Society of Echocardiography 2006 19 40–47. (https://doi.org/10.1016/j.echo.2005.07.017)

    PubMed  Google Scholar 

  47. Lee KS, Honda T, Reuss CS, Zhou Y, Khandheria BK & Lester SJ. Effect of echocardiographic contrast on velocity vector imaging myocardial tracking. Journal of the American Society of Echocardiography 2008 21 818–823. (https://doi.org/10.1016/j.echo.2007.12.007)

    PubMed  Google Scholar 

  48. Huqi A, He A, Klas B, Paterson I, Thompson R, Irwin M, Ezekowitz J, Choy JB & Becher H. Myocardial deformation analysis in contrast echocardiography: first results using two-dimensional cardiac performance analysis. Journal of the American Society of Echocardiography 2013 26 1282–1289. (https://doi.org/10.1016/j.echo.2013.08.010)

    PubMed  Google Scholar 

  49. Zoppellaro G, Venneri L, Khattar RS, Li W & Senior R. Simultaneous assessment of myocardial perfusion, wall motion, and deformation during myocardial contrast echocardiography: a feasibility study. Echocardiography 2016 33 889–895. (https://doi.org/10.1111/echo.13190)

    PubMed  Google Scholar 

  50. Cavalcante JL, Collier P, Plana JC, Agler D, Thomas JD & Marwick TH. Two-dimensional longitudinal strain assessment in the presence of myocardial contrast agents is only feasible with speckle-tracking after microbubble destruction. Journal of the American Society of Echocardiography 2012 25 1309–1318. (https://doi.org/10.1016/j.echo.2012.09.019)

    PubMed  Google Scholar 

  51. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Heart Journal 2016 37 2129–2200. (https://doi.org/10.1093/eurheartj/ehw128)

    PubMed  Google Scholar 

  52. Heart Failure Society of America. Executive summary: HFSA 2010 comprehensive heart failure practice guideline. Journal of Cardiac Failure 2010 16 475–539. (https://doi.org/10.1016/j.cardfail.2010.04.005)

    Google Scholar 

  53. Mehrotra R, Alagesan R & Srivastava S. Quantitative assessment of left ventricular systolic function using 3-dimensional echocardiography. Indian Heart Journal 2013 65 620–628. (https://doi.org/10.1016/j.ihj.2013.08.027)

    PubMed  PubMed Central  Google Scholar 

  54. Monaghan MJ. Role of real time 3D echocardiography in evaluating the left ventricle. Heart 2006 92 131–136. (https://doi.org/10.1136/hrt.2004.058388)

    PubMed  PubMed Central  Google Scholar 

  55. Szulik M, Sliwinska A, Lenarczyk R, Szymala M, Kalinowski ME, Markowicz-Pawlus E, Kalarus Z & Kukulski T. 3D and 2D left ventricular systolic function imaging–from ejection fraction to deformation. Cardiac resynchronization therapy–substudy. Acta Cardiologica 2015 70 21–30. (https://doi.org/10.2143/AC.70.1.3064590)

    PubMed  Google Scholar 

  56. Honos G, Amyot R, Choy J, Leong-Poi H, Schnell G & Yu E. Contrast echocardiography in Canada: Canadian Cardiovascular Society/Canadian Society of Echocardiography position paper. Canadian Journal of Cardiology 2007 23 351–356. (https://doi.org/10.1016/S0828-282X(07)70767-5)

    Google Scholar 

  57. Platts DG, McDonald C, Shekar K, Burstow DJ, Mullany D, Ziegenfuss M, Diab S & Fraser JF. Quantification of perflutren microsphere contrast destruction during transit through an ex vivo extracorporeal membrane oxygenation circuit. Intensive Care Medicine Experimental 2016 4 7. (https://doi.org/10.1186/s40635-016-0079-0)

    PubMed  PubMed Central  Google Scholar 

  58. Platts D, Fraser JF, Mullany D & Burstow D. Left ventricular endocardial definition enhancement using Perflutren microsphere contrast echocardiography during peripheral venoarterial extracorporeal membranous oxygenation. Echocardiography 2010 27 E112–E114. (https://doi.org/10.1111/j.1540-8175.2010.01184.x)

    PubMed  Google Scholar 

  59. Sedgwick JF, Burstow DJ & Platts DG. P028 the role of echocardiography in the management of patients supported by extracorporeal membranous oxygenation (ECMO). International Journal of Cardiology 2011 147 (Supplement 1) S16–S17. (https://doi.org/10.1016/S0167-5273(11)70052-3)

    Google Scholar 

  60. Platts DG, Diab S, Dunster KR, Shekar K, Burstow DJ, Sim B, Tunbridge M, McDonald C, Chemonges S, Chan J, et al. Feasibility of Perflutren microsphere contrast transthoracic echocardiography in the visualization of ventricular endocardium during venovenous extracorporeal membrane oxygenation in a validated ovine model. Echocardiography 2014 32 548–556. (https://doi.org/10.1111/echo.12695)

    PubMed  Google Scholar 

  61. Bennett CE, Tweet MS, Michelena HI, Schears GJ & Mulvagh SL. Safety and feasibility of contrast echocardiography for ECMO evaluation. JACC: Cardiovascular Imaging 2017 10 603–604. (https://doi.org/10.1016/j.jcmg.2016.05.004)

    PubMed  Google Scholar 

  62. Grecu L & Fishman MA. Beware of life-threatening activation of air bubble detector during contrast echocardiography in patients on venoarterial extracorporeal membrane oxygenator support. Journal of the American Society of Echocardiography 2014 27 1130–1131. (https://doi.org/10.1016/j.echo.2014.06.010)

    PubMed  Google Scholar 

  63. Timpa JG, O'Meara C, McIlwain RB, Dabal RJ & Alten JA. Massive systemic air embolism during extracorporeal membrane oxygenation support of a neonate with acute respiratory distress syndrome after cardiac surgery. Journal of Extra-Corporeal Technology 2011 43 86–88.

    Google Scholar 

  64. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, Nesser HJ, Khandheria B, Narula J & Sengupta PP. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. Journal of the American Society of Echocardiography 2010 23 351–369; quiz 453. (https://doi.org/10.1016/j.echo.2010.02.015)

    PubMed  Google Scholar 

  65. Marwick TH, Leano RL, Brown J, Sun JP, Hoffmann R, Lysyansky P, Pecker M & Thomas JD. Myocardial strain measurement With 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC: Cardiovascular Imaging 2009 2 80–84. (https://doi.org/10.1016/j.jcmg.2007.12.007)

    PubMed  Google Scholar 

  66. Yamada A, Luis SA, Sathianathan D, Khandheria BK, Cafaro J, Hamilton-Craig CR, Platts DG, Haseler L, Burstow D & Chan J. Reproducibility of regional and global longitudinal strains derived from two-dimensional speckle-tracking and Doppler tissue imaging between expert and novice readers during quantitative dobutamine stress echocardiography. Journal of the American Society of Echocardiography 2014 27 880–887. (https://doi.org/10.1016/j.echo.2014.04.016)

    PubMed  Google Scholar 

  67. Luis SA, Yamada A, Khandheria BK, Speranza V, Benjamin A, Ischenko M, Platts DG, Hamilton-Craig CR, Haseler L, Burstow D, et al. Use of three-dimensional speckle-tracking echocardiography for quantitative assessment of global left ventricular function: a comparative study to three-dimensional echocardiography. Journal of the American Society of Echocardiography 2014 27 285–291. (https://doi.org/10.1016/j.echo.2013.11.002)

    PubMed  Google Scholar 

  68. Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP & Voigt JU. Head-to-head comparison of global longitudinal strain measurements among nine different vendors. Journal of the American Society of Echocardiography 2015 28 1171.e2–1181.e2. (https://doi.org/10.1016/j.echo.2015.06.011)

    Google Scholar 

Download references

Funding

This research was supported in part by funding from the National Health and Medical Research Council (grant no. 1010939)and The Prince Charles Hospital Foundation. John Fraser holds a Health Research Fellowship awarded by the Office of Health and Medical research, Queensland, Australia. The Siemens Sequoia scanner used for this research was obtained with a research grant awarded to David Platts from the Private Practice Fund, The Prince Charles Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Platts MBBS MD FRACP FCSANZ FESC FASE.

Rights and permissions

This work is licensed under a Creative Commons Attribution 4.0 International License.(http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platts, D.G., Shiino, K., Chan, J. et al. Echocardiographic assessment of myocardial function and mechanics during veno-venous extracorporeal membrane oxygenation. Echo Res Pract 6, 25–35 (2019). https://doi.org/10.1530/ERP-18-0071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-18-0071

Key Words