Skip to main content

Educational Series in Congenital Heart Disease: Three-dimensional echocardiography in congenital heart disease

Abstract

Three-dimensional echocardiography is a valuable tool for the assessment of cardiac function where it permits calculation of chamber volume and function. The anatomy of valvar and septal structures can be presented in unique and intuitive ways to enhance surgical planning. Guidance of interventional procedures using the technique has now become established in many clinical settings. Enhancements of image processing to include intracavity flow, image fusion and true 3D displays look set to further improve the contribution of this modality to care of the patient with congenital heart disease.

References

  1. Simpson J, Lopez L, Acar P, Friedberg M, Khoo N, Ko H, Marek J, Marx G, McGhie J, Meijboom F, et al. Three-dimensional echocardiography in congenital heart disease: an expert consensus document from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. European Heart Journal: Cardiovascular Imaging 2016 17 1071–1097. (https://doi.org/10.1093/ehjci/jew172)

    PubMed  Google Scholar 

  2. Nanda NC, Kisslo J, Lang R, Pandian N, Marwick T, Shirali G & Kelly G. Examination protocol for three-dimensional echocardiography. Echocardiography 2004 21 763–768. (https://doi.org/10.1111/j.0742-2822.2004.218001.x)

    Article  Google Scholar 

  3. McGhie JS, van den Bosch AE, Haarman MG, Ren B, Roos-Hesselink JW, Witsenburg M & Geleijnse ML. Characterization of atrial septal defect by simultaneous multiplane two-dimensional echocardiography. European Heart Journal Cardiovascular Imaging 2014 15 1145–1151. (https://doi.org/10.1093/ehjci/jeu098)

    Article  Google Scholar 

  4. Balluz R, Liu L, Zhou X & Ge S. Real time three-dimensional echocardiography for quantification of ventricular volumes, mass, and function in children with congenital and acquired heart diseases. Echocardiography 2013 30 472–482. (https://doi.org/10.1111/echo.12132)

    Article  Google Scholar 

  5. Friedberg MK, Su X, Tworetzky W, Soriano BD, Powell AJ & Marx GR. Validation of 3D echocardiographic assessment of left ventricular volumes, mass, and ejection fraction in neonates and infants with congenital heart disease: a comparison study with cardiac MRI. Circulation: Cardiovascular Imaging 2010 3 735–742. (https://doi.org/10.1161/CIRCIMAGING.109.928663)

    Google Scholar 

  6. Krell K, Laser KT, Dalla-Pozza R, Winkler C, Hildebrandt U, Kececioglu D, Breuer J & Herberg U. Real-time three-dimensional echocardiography of the left ventricle-pediatric percentiles and head-to-head comparison of different contour-finding algorithms: a multicenter study. Journal of the American Society of Echocardiography 2018 31 702.e13–711.e13.

    Article  Google Scholar 

  7. Poutanen T & Jokinen E. Left ventricular mass in 169 healthy children and young adults assessed by three-dimensional echocardiography. Pediatric Cardiology 2007 28 201–207. (https://doi.org/10.1007/s00246-006-0101-5)

    Article  CAS  Google Scholar 

  8. van den Bosch AE, Robbers-Visser D, Krenning BJ, McGhie JS, Helbing WA, Meijboom FJ, Roos-Hesselink JW. Comparison of real-time three-dimensional echocardiography to magnetic resonance imaging for assessment of left ventricular mass. American Journal of Cardiology 2006 97 113–117. (https://doi.org/10.1016/j.amjcard.2005.07.114)

    Article  Google Scholar 

  9. Cui W, Gambetta K, Zimmerman F, Freter A, Sugeng L, Lang R & Roberson DA. Real-time three-dimensional echocardiographic assessment of left ventricular systolic dyssynchrony in healthy children. Journal of the American Society of Echocardiography 2010 23 1153–1159. (https://doi.org/10.1016/j.echo.2010.08.009)

    Article  Google Scholar 

  10. Navarini S, Bellsham-Revell H, Chubb H, Gu H, Sinha MD & Simpson JM. Myocardial deformation measured by 3-dimensional speckle tracking in children and adolescents With systemic arterial hypertension. Hypertension 2017 70 1142–1147. (https://doi.org/10.1161/HYPERTENSIONAHA.117.09574)

    Article  CAS  Google Scholar 

  11. Kowalik E, Kowalski M, Klisiewicz A & Hoffman P. Global area strain is a sensitive marker of subendocardial damage in adults after optimal repair of aortic coarctation: three-dimensional speckle-tracking echocardiography data. Heart and Vessels 2016 31 1790–1797. (https://doi.org/10.1007/s00380-016-0803-4)

    Article  Google Scholar 

  12. Yu HK, Li SJ, Ip JJK, Lam WWM, Wong SJ & Cheung YF. Right ventricular mechanics in adults after surgical repair of tetralogy of Fallot: insights from three-dimensional speckle-tracking echocardiography. Journal of the American Society of Echocardiography 2014 27 423–429. (https://doi.org/10.1016/j.echo.2013.12.021)

    Article  Google Scholar 

  13. Laser KT, Karabiyik A, Körperich H, Horst JP, Barth P, Kececioglu D, Burchert W, DallaPozza R & Herberg U. Validation and reference values for three-dimensional echocardiographic right ventricular volumetry in children: a multicenter study. Journal of the American Society of Echocardiography 2018 31 1050–1063. (https://doi.org/10.1016/j.echo.2018.03.010)

    Article  Google Scholar 

  14. Gomez A, Oktay O, Rueckert D, Penney GP, Schnabel JA, Simpson JM & Pushparajah K. Regional differences in end-diastolic volumes between 3D echo and CMR in HLHS patients. Frontiers in Pediatrics 2016 4 133. (https://doi.org/10.3389/fped.2016.00133)

    PubMed  PubMed Central  Google Scholar 

  15. Dragulescu A, Grosse-Wortmann L, Fackoury C & Mertens L. Echocardiographic assessment of right ventricular volumes: a comparison of different techniques in children after surgical repair of tetralogy of Fallot. European Heart Journal Cardiovascular Imaging 2012 13 596–604. (https://doi.org/10.1093/ejechocard/jer278)

    Article  Google Scholar 

  16. Soriano BD, Hoch M, Ithuralde A, Geva T, Powell AJ, Kussman BD, Graham DA, Tworetzky W & Marx GR. Matrix-array 3-dimensional echocardiographic assessment of volumes, mass, and ejection fraction in young pediatric patients with a functional single ventricle: a comparison study with cardiac magnetic resonance. Circulation 2008 117 1842–1848. (https://doi.org/10.1161/CIRCULATIONAHA.107.715854)

    Article  Google Scholar 

  17. Rice K & Simpson J. Three-dimensional echocardiography of congenital abnormalities of the left atrioventricular valve. Echo Research and Practice 2015 2 R13–R24. (https://doi.org/10.1530/ERP-15-0003)

    Article  Google Scholar 

  18. Kutty S, Colen TM & Smallhorn JF. Three-dimensional echocardiography in the assessment of congenital mitral valve disease. Journal of the American Society of Echocardiography 2014 27 142–154. (https://doi.org/10.1016/j.echo.2013.11.011)

    Article  Google Scholar 

  19. Charakida M, Pushparajah K & Simpson J. 3D echocardiography in congenital heart disease: a valuable tool for the surgeon. Future Cardiology 2014 10 497–509. (https://doi.org/10.2217/fca.14.38)

    Article  CAS  Google Scholar 

  20. Pushparajah K, Barlow A, Tran VH, Miller OI, Zidere V, Vaidyanathan B & Simpson JM. A systematic three-dimensional echocardiographic approach to assist surgical planning in double outlet right ventricle. Echocardiography 2013 30 234–238. (https://doi.org/10.1111/echo.12037)

    Article  Google Scholar 

  21. Mishra J, Puri HP, Hsiung MC, Misra S, Khairnar P, Laxmi Gollamudi B, Patel A, Nanda NC, Yin WH, Wei J, et al. Incremental value of live/real time three-dimensional over two-dimensional transesophageal echocardiography in the evaluation of right coronary artery fistula. Echocardiography 2011 28 805–808. (https://doi.org/10.1111/j.1540-8175.2011.01447.x)

    Article  Google Scholar 

  22. Giannakoulas G & Thanopoulos V. Three-dimensional transesophageal echocardiography for guiding percutaneous Fontan fenestration closure. Echocardiography 2014 31 E230–E231. (https://doi.org/10.1111/echo.12606)

    PubMed  Google Scholar 

  23. Cua CL, Kollins K, Roble S & Holzer RJ. Three-dimensional image of a baffle leak in a patient with a mustard operation. Echocardiography 2014 31 E315–E316. (https://doi.org/10.1111/echo.12736)

    Article  Google Scholar 

  24. Hascoet S, Smolka G, Bagate F, Guihaire J, Potier A, Hadeed K, Lavie-Badie Y, Bouvaist H, Dauphin C, Bauer F, et al. Multimodality imaging guidance for percutaneous paravalvular leak closure: insights from the multi-centre FFPP register. Archives of Cardiovascular Diseases 2018 111 421–431. (https://doi.org/10.1016/j.acvd.2018.05.001)

    Article  Google Scholar 

  25. Biaggi P, Fernandez-Golfín C, Hahn R & Corti R. Hybrid imaging during transcatheter structural heart interventions. Current Cardiovascular Imaging Reports 2015 8 33. (https://doi.org/10.1007/s12410-015-9349-6)

    Article  Google Scholar 

  26. Jone PN, Ross MM, Bracken JA, Mulvahill MJ, Di Maria MV & Fagan TE. Feasibility and safety of using a fused echocardiography/fluoroscopy imaging system in patients with congenital heart disease. Journal of the American Society of Echocardiography 2016 29 513–521. (https://doi.org/10.1016/j.echo.2016.03.014)

    Article  Google Scholar 

  27. Hadeed K, Hascoët S, Karsenty C, Ratsimandresy M, Dulac Y, Chausseray G, Alacoque X, Fraisse A & Acar P. Usefulness of echocardiographic-fluoroscopic fusion imaging in children with congenital heart disease. Archives of Cardiovascular Diseases 2018 111 399–410. (https://doi.org/10.1016/j.acvd.2018.03.006)

    Article  Google Scholar 

  28. Valverde I, Gomez-Ciriza G, Hussain T, Suarez-Mejias C, Velasco-Forte MN, Byrne N, Ordoñez A, Gonzalez-Calle A, Anderson D, Hazekamp MG, et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. European Journal of Cardio-Thoracic Surgery 2017 52 1139–1148. (https://doi.org/10.1093/ejcts/ezx208)

    Article  Google Scholar 

  29. Olivieri LJ, Krieger A, Loke YH, Nath DS, Kim PCW & Sable CA. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. Journal of the American Society of Echocardiography 2015 28 392–397. (https://doi.org/10.1016/j.echo.2014.12.016)

    Article  Google Scholar 

  30. Scanlan AB, Nguyen AV, Ilina A, Lasso A, Cripe L, Jegatheeswaran A, Silvestro E, McGowan FX, Mascio CE, Fuller S, et al. Comparison of 3D echocardiogram-derived 3D printed valve models to molded models for simulated repair of pediatric atrioventricular valves. Pediatric Cardiology 2018 39 538–547. (https://doi.org/10.1007/s00246-017-1785-4)

    Article  Google Scholar 

  31. de Vecchi A, Gomez A, Pushparajah K, Schaeffter T, Simpson JM, Razavi R, Penney GP, Smith NP & Nordsletten DA. A novel methodology for personalized simulations of ventricular hemodynamics from noninvasive imaging data. Computerized Medical Imaging and Graphics 2016 51 20–31. (https://doi.org/10.1016/j.compmedimag.2016.03.004)

    Article  Google Scholar 

  32. Gomez A, De Vecchi A, Jantsch M, Shi W, Pushparajah K, Simpson JM, Smith NP, Rueckert D, Schaeffter T & Penney GP. 4D blood flow reconstruction over the entire ventricle from wall motion and blood velocity derived from ultrasound data. IEEE Transactions on Medical Imaging 2015 34 2298–2308. (doi:10.1109/TMI.2015.2428932)

    Article  Google Scholar 

  33. Simpson JM. Three-dimensional echocardiography in congenital heart disease: the next steps. Archives of Cardiovascular Diseases 2016 109 81–83. (https://doi.org/10.1016/j.acvd.2015.09.010)

    Article  Google Scholar 

  34. Fadnes S, Nyrnes SA, Torp H & Lovstakken L. Shunt flow evaluation in congenital heart disease based on two-dimensional speckle tracking. Ultrasound in Medicine and Biology 2014 40 2379–2391. (https://doi.org/10.1016/j.ultrasmedbio.2014.03.029)

    Article  Google Scholar 

  35. Wong J, Chabiniok R, Tibby SM, Pushparajah K, Sammut E, Celermajer DS, Giese D, Hussain T, Greil GF, Schaeffter T, et al. Exploring kinetic energy as a new marker of cardiac function in the single ventricle circulation. Journal of Applied Physiology 2018 125 889–900. (https://doi.org/10.1152/japplphysiol.00580.2017)

    Article  Google Scholar 

  36. Ong CS, Krishnan A, Huang CY, Spevak P, Vricella L, Hibino N, Garcia JR & Gaur L. Role of virtual reality in congenital heart disease. Congenital Heart Disease 2018 13 357–361. (https://doi.org/10.1111/chd.12587)

    Article  Google Scholar 

Download references

Funding

Prof. Simpson acknowledges grant support from the NIHR i4i scheme which funds ‘The 3D Heart Project’ at The Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS and King’s College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M Simpson MD FRCP.

Rights and permissions

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.(http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simpson, J.M., van den Bosch, A. Educational Series in Congenital Heart Disease: Three-dimensional echocardiography in congenital heart disease. Echo Res Pract 6, R75–R86 (2019). https://doi.org/10.1530/ERP-18-0074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-18-0074

Key Words