Skip to main content

Application of mobile health, telemedicine and artificial intelligence to echocardiography

Abstract

The intersection of global broadband technology and miniaturized high-capability computing devices has led to a revolution in the delivery of healthcare and the birth of telemedicine and mobile health (mHealth). Rapid advances in handheld imaging devices with other mHealth devices such as smartphone apps and wearable devices are making great strides in the field of cardiovascular imaging like never before. Although these technologies offer a bright promise in cardiovascular imaging, it is far from straightforward. The massive data influx from telemedicine and mHealth including cardiovascular imaging supersedes the existing capabilities of current healthcare system and statistical software. Artificial intelligence with machine learning is the one and only way to navigate through this complex maze of the data influx through various approaches. Deep learning techniques are further expanding their role by image recognition and automated measurements. Artificial intelligence provides limitless opportunity to rigorously analyze data. As we move forward, the futures of mHealth, telemedicine and artificial intelligence are increasingly becoming intertwined to give rise to precision medicine.

References

  1. Burke LE, Ma J, Azar KM, Bennett GG, Peterson ED, Zheng Y, Riley W, Stephens J, Shah SH, Suffoletto B, et al. Current science on consumer use of mobile health for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation 2015 132 1157–1213. (https://doi.org/10.1161/CIR.0000000000000232)

    PubMed  PubMed Central  Google Scholar 

  2. Tuckson RV, Edmunds M, Hodgkins ML. Telehealth. New England Journal of Medicine 2017 377 1585–1592. (https://doi.org/10.1056/NEJMsr1503323)

    Google Scholar 

  3. Office of Health Policy, Office of the Assistant Secretary for Planning and Evaulation. Report to Congress: E-health and telemedicine. Washington, DC, USA: Department of Health and Human Services, 2016. (available at: https://aspe.hhs.gov/sites/default/files/pdf/206751/TelemedicineE-HealthReport.pdf)

    Google Scholar 

  4. Chamsi-Pasha MA, Sengupta PP, Zoghbi WA. Handheld echocardiography: current state and future perspectives. Circulation 2017 136 2178–2188. (https://doi.org/10.1161/CIRCULATIONAHA.117.026622)

    PubMed  Google Scholar 

  5. Johri AM, Durbin J, Newbigging J, Tanzola R, Chow R, De S, Tam J. Cardiac point-of-care ultrasound: state-of-the-art in Medical School education. Journal of the American Society of Echocardiography 2018 31 749–760. (https://doi.org/10.1016/j.echo.2018.01.014)

    PubMed  Google Scholar 

  6. Konstam MA, Hill JA, Kovacs RJ, Harrington RA, Arrighi JA, Khera A & Academic Cardiology Section Leadership Council of the American College of Cardiology. The academic medical system: reinvention to survive the revolution in health care. Journal of the American College of Cardiology 2017 69 1305–1312. (https://doi.org/10.1016/j.jacc.2016.12.024)

    PubMed  Google Scholar 

  7. Skjetne K, Graven T, Haugen BO, Salvesen Ø, Kleinau JO, Dalen H. Diagnostic influence of cardiovascular screening by pocket-size ultrasound in a cardiac unit. European Journal of Echocardiography 2011 12 737–743. (https://doi.org/10.1093/ejechocard/jer111)

    PubMed  PubMed Central  Google Scholar 

  8. Prinz C, Voigt JU. Diagnostic accuracy of a hand-held ultrasound scanner in routine patients referred for echocardiography. Journal of the American Society of Echocardiography 2011 24 111–116. (https://doi.org/10.1016/j.echo.2010.10.017)

    PubMed  Google Scholar 

  9. Galderisi M, Santoro A, Versiero M, Lomoriello VS, Esposito R, Raia R, Farina F, Schiattarella PL, Bonito M, Olibet M, et al. Improved cardiovascular diagnostic accuracy by pocket size imaging device in non-cardiologic outpatients: the NaUSiCa (Naples ultrasound Stethoscope in Cardiology) study. Cardiovascular Ultrasound 2010 8 51. (https://doi.org/10.1186/1476-7120-8-51)

    PubMed  PubMed Central  Google Scholar 

  10. Testuz A, Muller H, Keller PF, Meyer P, Stampfli T, Sekoranja L, Vuille C, Burri H. Diagnostic accuracy of pocket-size handheld echocardiographs used by cardiologists in the acute care setting. European Heart Journal Cardiovascular Imaging 2013 14 38–42. (https://doi.org/10.1093/ehjci/jes085)

    PubMed  Google Scholar 

  11. Andersen GN, Haugen BO, Graven T, Salvesen O, Mjolstad OC, Dalen H. Feasibility and reliability of point-of-care pocket-sized echocardiography. European Journal of Echocardiography 2011 12 665–670. (https://doi.org/10.1093/ejechocard/jer108)

    PubMed  PubMed Central  Google Scholar 

  12. Lafitte S, Alimazighi N, Reant P, Dijos M, Zaroui A, Mignot A, Lafitte M, Pillois X, Roudaut R, DeMaria A. Validation of the smallest pocket echoscopic device’s diagnostic capabilities in heart investigation. Ultrasound in Medicine and Biology 2011 37 798–804. (https://doi.org/10.1016/j.ultrasmedbio.2011.02.010)

    PubMed  Google Scholar 

  13. Michalski B, Kasprzak JD, Szymczyk E, Lipiec P. Diagnostic utility and clinical usefulness of the pocket echocardiographic device. Echocardiography 2012 29 1–6. (https://doi.org/10.1111/j.1540-8175.2011.01553.x)

    PubMed  Google Scholar 

  14. Biais M, Carrie C, Delaunay F, Morel N, Revel P, Janvier G. Evaluation of a new pocket echoscopic device for focused cardiac ultrasonography in an emergency setting. Critical Care 2012 16 R82. (https://doi.org/10.1186/cc11340)

    PubMed  PubMed Central  Google Scholar 

  15. Prinz C, Dohrmann J, van Buuren F, Bitter T, Bogunovic N, Horstkotte D, Faber L. Diagnostic performance of handheld echocardiography for the assessment of basic cardiac morphology and function: a validation study in routine cardiac patients. Echocardiography 2012 29 887–894. (https://doi.org/10.1111/j.1540-8175.2012.01728.x)

    PubMed  Google Scholar 

  16. Fukuda S, Shimada K, Kawasaki T, Fujimoto H, Maeda K, Inanami H, Yoshida K, Jissho S, Taguchi H, Yoshiyama M, et al. Pocket-sized transthoracic echocardiography device for the measurement of cardiac chamber size and function. Circulation Journal 2009 73 1092–1096. (https://doi.org/10.1253/circj.CJ-08-1076)

    PubMed  Google Scholar 

  17. Mjolstad OC, Dalen H, Graven T, Kleinau JO, Salvesen O, Haugen BO. Routinely adding ultrasound examinations by pocket-sized ultrasound devices improves inpatient diagnostics in a medical department. European Journal of Internal Medicine 2012 23 185–191. (https://doi.org/10.1016/j.ejim.2011.10.009)

    PubMed  Google Scholar 

  18. Panoulas VF, Daigeler AL, Malaweera AS, Lota AS, Baskaran D, Rahman S, Nihoyannopoulos P. Pocket-size hand-held cardiac ultrasound as an adjunct to clinical examination in the hands of medical students and junior doctors. European Heart Journal Cardiovascular Imaging 2013 14 323–330. (https://doi.org/10.1093/ehjci/jes140)

    PubMed  Google Scholar 

  19. Abe Y, Ito M, Tanaka C, Ito K, Naruko T, Itoh A, Haze K, Muro T, Yoshiyama M, Yoshikawa J. A novel and simple method using pocket-sized echocardiography to screen for aortic stenosis. Journal of the American Society of Echocardiography 2013 26 589–596. (https://doi.org/10.1016/j.echo.2013.03.008)

    PubMed  Google Scholar 

  20. Furukawa A, Abe Y, Ito M, Tanaka C, Ito K, Komatsu R, Haze K, Naruko T, Yoshiyama M, Yoshikawa J. Prediction of aortic stenosis-related events in patients with systolic ejection murmur using pocket-sized echocardiography. Journal of Cardiology 2017 69 189–194. (https://doi.org/10.1016/j.jjcc.2016.02.021)

    PubMed  Google Scholar 

  21. Gustafsson M, Alehagen U, Johansson P. Imaging congestion with a pocket ultrasound device: prognostic implications in patients With chronic heart failure. Journal of Cardiac Failure 2015 21 548–554. (https://doi.org/10.1016/j.cardfail.2015.02.004)

    PubMed  Google Scholar 

  22. Phillips CT, Manning WJ. Advantages and pitfalls of pocket ultrasound vs daily chest radiography in the coronary care unit: a single-user experience. Echocardiography 2017 34 656–661. (https://doi.org/10.1111/echo.13509)

    PubMed  Google Scholar 

  23. Russell FM, Ehrman RR, Cosby K, Ansari A, Tseeng S, Christain E, Bailitz J. Diagnosing acute heart failure in patients with undifferentiated dyspnea: a lung and cardiac ultrasound (LuCUS) protocol. Academic Emergency Medicine 2015 22 182–191. (https://doi.org/10.1111/acem.12570)

    PubMed  Google Scholar 

  24. Nishigami K. Point-of-care echocardiography for aortic dissection, pulmonary embolism and acute coronary syndrome in patients with killer chest pain: EASY screening focused on the assessment of effusion, aorta, ventricular size and shape and ventricular asynergy. Journal of Echocardiography 2015 13 141–144. (https://doi.org/10.1007/s12574-015-0265-1)

    PubMed  Google Scholar 

  25. Carlino MV, Paladino F, Sforza A, Serra C, Liccardi F, de Simone G, Mancusi C. Assessment of left atrial size in addition to focused cardiopulmonary ultrasound improves diagnostic accuracy of acute heart failure in the emergency department. Echocardiography 2018 35 785–791. (https://doi.org/10.1111/echo.13851)

    PubMed  Google Scholar 

  26. Filipiak-Strzecka D, Kasprzak JD, Szymczyk E, Wejner-Mik P, Lipiec P. Bedside screening with the use of pocket-size imaging device can be useful for ruling out carotid artery stenosis in patients scheduled for cardiac surgery. Echocardiography 2017 34 716–722. (https://doi.org/10.1111/echo.13507)

    PubMed  Google Scholar 

  27. Esposito R, Ilardi F, Schiano Lomoriello V, Sorrentino R, Sellitto V, Giugliano G, Esposito G, Trimarco B, Galderisi M. Identification of the main determinants of abdominal aorta size: a screening by pocket size imaging device. Cardiovascular Ultrasound 2017 15 2. (https://doi.org/10.1186/s12947-016-0094-z)

    PubMed  PubMed Central  Google Scholar 

  28. Cavallari I, Mega S, Goffredo C, Patti G, Chello M, Di Sciascio G. Hand-held echocardiography in the setting of pre-operative cardiac evaluation of patients undergoing non-cardiac surgery: results from a randomized pilot study. International Journal of Cardiovascular Imaging 2015 31 995–1000. (https://doi.org/10.1007/s10554-015-0656-4)

    Google Scholar 

  29. Khan HA, Wineinger NE, Uddin PQ, Mehta HS, Rubenson DS, Topol EJ. Can hospital rounds with pocket ultrasound by cardiologists reduce standard echocardiography? American Journal of Medicine 2014 127 669.e1–669.e7. (https://doi.org/10.1016/j.amjmed.2014.03.015)

    Google Scholar 

  30. Bhavnani SP, Narula J, Sengupta PP. Mobile technology and the digitization of healthcare. European Heart Journal 2016 37 1428–1438. (https://doi.org/10.1093/eurheartj/ehv770)

    PubMed  PubMed Central  Google Scholar 

  31. Chow CK, Ariyarathna N, Islam SM, Thiagalingam A, Redfern J. mHealth in cardiovascular health care. Heart, Lung and Circulation 2016 25 802–807. (https://doi.org/10.1016/j.hlc.2016.04.009)

    PubMed  Google Scholar 

  32. Eapen ZJ, Turakhia MP, McConnell MV, Graham G, Dunn P, Tiner C, Rich C, Harrington RA, Peterson ED, Wayte P. Defining a mobile health roadmap for cardiovascular health and disease. Journal of the American Heart Association 2016 5 e003119. (https://doi.org/10.1161/JAHA.115.003119)

    PubMed  PubMed Central  Google Scholar 

  33. Tarakji KG, Wazni OM, Callahan T, Kanj M, Hakim AH, Wolski K, Wilkoff BL, Saliba W, Lindsay BD. Using a novel wireless system for monitoring patients after the atrial fibrillation ablation procedure: the iTransmit study. Heart Rhythm 2015 12 554–559. (https://doi.org/10.1016/j.hrthm.2014.11.015)

    PubMed  Google Scholar 

  34. Williams B, Lacy PS, Baschiera F, Brunel P, Dusing R. Novel description of the 24-hour circadian rhythms of brachial versus central aortic blood pressure and the impact of blood pressure treatment in a randomized controlled clinical trial: the Ambulatory Central Aortic Pressure (AmCAP) Study. Hypertension 2013 61 1168–1176. (https://doi.org/10.1161/HYPERTENSIONAHA.111.00763)

    CAS  PubMed  Google Scholar 

  35. Brooks GC, Vittinghoff E, Iyer S, Tandon D, Kuhar P, Madsen KA, Marcus GM, Pletcher MJ, Olgin JE. Accuracy and usability of a self-administered 6-minute walk test smartphone application. Circulation: Heart Failure 2015 8 905–913. (https://doi.org/10.1161/CIRCHEARTFAILURE.115.002062)

    Google Scholar 

  36. Tison GH, Sanchez JM, Ballinger B, Singh A, Olgin JE, Pletcher MJ, Vittinghoff E, Lee ES, Fan SM, Gladstone RA, et al. Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiology 2018 3 409–416. (https://doi.org/10.1001/jamacardio.2018.0136)

    PubMed  PubMed Central  Google Scholar 

  37. Maisel A, Barnard D, Jaski B, Frivold G, Marais J, Azer M, Miyamoto MI, Lombardo D, Kelsay D, Borden K, et al. Primary results of the HABIT trial (heart failure assessment with BNP in the home). Journal of the American College of Cardiology 2013 61 1726–1735. (https://doi.org/10.1016/j.jacc.2013.01.052)

    PubMed  Google Scholar 

  38. Abdolmanafi A, Duong L, Dahdah N, Cheriet F. Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography. Biomedical Optics Express 2017 8 1203–1220. (https://doi.org/10.1364/BOE.8.001203)

    PubMed  PubMed Central  Google Scholar 

  39. Bhavnani SP, Sola S, Adams D, Venkateshvaran A, Dash PK & Sengupta PP & ASEF-VALUES Investigators. A randomized trial of pocket-echocardiography integrated mobile health device assessments in modern structural heart disease clinics. JACC: Cardiovascular Imaging 2018 11 546–557. (https://doi.org/10.1016/j.jcmg.2017.06.019)

    PubMed  Google Scholar 

  40. Singh S, Bansal M, Maheshwari P, Adams D, Sengupta SP, Price R, Dantin L, Smith M, Kasliwal RR, Pellikka PA, et al. American Society of Echocardiography: remote echocardiography with web-based assessments for referrals at a distance (ASE-REWARD) study. Journal of the American Society of Echocardiography 2013 26 221–233. (https://doi.org/10.1016/j.echo.2012.12.012)

    Google Scholar 

  41. Choi BG, Mukherjee M, Dala P, Young HA, Tracy CM, Katz RJ, Lewis JF. Interpretation of remotely downloaded pocket-size cardiac ultrasound images on a web-enabled smartphone: validation against workstation evaluation. Journal of the American Society of Echocardiography 2011 24 1325–1330. (https://doi.org/10.1016/j.echo.2011.08.007)

    PubMed  Google Scholar 

  42. GE Healthcare. Vscan Extend datasheet. Chicago, IL, USA: General Electric Company, 2018. (available at: https://www.gehealthcare.com/-/media/fdbbc3f456914f5dbc3cc44cb866ffb5.pdf)

    Google Scholar 

  43. Bansal M, Singh S, Maheshwari P, Adams D, McCulloch ML, Dada T, Sengupta SP, Kasliwal RR, Pellikka PA, Sengupta PP, et al. Value of interactive scanning for improving the outcome of new-learners in transcontinental tele-echocardiography (VISION-in-tele-Echo) study. Journal of the American Society of Echocardiography 2015 28 75–87. (https://doi.org/10.1016/j.echo.2014.09.001)

    PubMed  Google Scholar 

  44. Boman K, Olofsson M, Berggren P, Sengupta PP, Narula J. Robot-assisted remote echocardiographic examination and teleconsultation: a randomized comparison of time to diagnosis with standard of care referral approach. JACC: Cardiovascular Imaging 2014 7 799–803. (https://doi.org/10.1016/j.jcmg.2014.05.006)

    PubMed  Google Scholar 

  45. Kagiyama N, Toki M, Hara M, Fukuda S, Aritaka S, Miki T, Ohara M, Hayashida A, Hirohata A, Yamamoto K, et al. Efficacy and accuracy of novel automated mitral valve quantification: three-dimensional transesophageal echocardiographic study. Echocardiography 2016 33 756–763. (https://doi.org/10.1111/echo.13135)

    PubMed  Google Scholar 

  46. Medvedofsky D, Mor-Avi V, Byku I, Singh A, Weinert L, Yamat M, Kruse E, Ciszek B, Nelson A, Otani K, et al. Three-dimensional echocardiographic automated quantification of left heart chamber volumes using an adaptive analytics algorithm: feasibility and impact of image quality in nonselected patients. Journal of the American Society of Echocardiography 2017 30 879–885. (https://doi.org/10.1016/j.echo.2017.05.018)

    PubMed  PubMed Central  Google Scholar 

  47. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Journal of the American Society of Echocardiography 2011 24 277–313. (https://doi.org/10.1016/j.echo.2011.01.015)

    PubMed  Google Scholar 

  48. Tsang W, Salgo IS, Medvedofsky D, Takeuchi M, Prater D, Weinert L, Yamat M, Mor-Avi V, Patel AR, Lang RM. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC: Cardiovascular Imaging 2016 9 769–782. (https://doi.org/10.1016/j.jcmg.2015.12.020)

    PubMed  Google Scholar 

  49. Medvedofsky D, Mor-Avi V, Amzulescu M, Fernandez-Golfin C, Hinojar R, Monaghan MJ, Otani K, Reiken J, Takeuchi M, Tsang W, et al. Three-dimensional echocardiographic quantification of the left-heart chambers using an automated adaptive analytics algorithm: multicentre validation study. European Heart Journal Cardiovascular Imaging 2018 19 47–58. (https://doi.org/10.1093/ehjci/jew328)

    PubMed  Google Scholar 

  50. Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart 2018 104 1156–1164. (https://doi.org/10.1136/heartjnl-2017-311198)

    PubMed  Google Scholar 

  51. Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, Ashley E, Dudley JT. Artificial intelligence in cardiology. Journal of the American College of Cardiology 2018 71 2668–2679. (https://doi.org/10.1016/j.jacc.2018.03.521)

    PubMed  Google Scholar 

  52. DeepMind. AlphaGo. London, UK: DeepMind Technologies Limited, 2019. (available at: https://deepmind.com/research/alphago/)

    Google Scholar 

  53. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. Journal of the American College of Cardiology 2017 69 2657–2664. (https://doi.org/10.1016/j.jacc.2017.03.571)

    PubMed  Google Scholar 

  54. Churpek MM, Yuen TC, Winslow C, Meltzer DO, Kattan MW, Edelson DP. Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Critical Care Medicine 2016 44 368–374. (https://doi.org/10.1097/CCM.0000000000001571)

    PubMed  Google Scholar 

  55. Goff DC Jr, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB Sr, Gibbons R, Greenland P, Lackland DT, Levy D, O’Donnell CJ, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology 2014 63 2935–2959. (https://doi.org/10.1016/j.jacc.2013.11.005)

    PubMed  Google Scholar 

  56. Cook NR, Ridker PM. Calibration of the pooled cohort equations for atherosclerotic cardiovascular disease: an update. Annals of Internal Medicine 2016 165 786–794. (https://doi.org/10.7326/M16-1739)

    PubMed  Google Scholar 

  57. Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, Gall W, Dudley JT. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circulation: Cardiovascular Imaging 2016 9 e004330. (https://doi.org/10.1161/CIRCIMAGING.115.004330)

    Google Scholar 

  58. Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. Journal of the American College of Cardiology 2016 68 2287–2295. (https://doi.org/10.1016/j.jacc.2016.08.062)

    PubMed  Google Scholar 

  59. Lancaster MC, Salem Omar AM, Narula S, Kulkarni H, Narula J, Sengupta PP. Phenotypic clustering of left ventricular diastolic function parameters: patterns and prognostic relevance. JACC: Cardiovascular Imaging 2018 [epub]. (https://doi.org/10.1016/j.jcmg.2018.02.005)

    Google Scholar 

  60. Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, Lee AM, Aung N, Lukaschuk E, Sanghvi MM, et al. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. Journal of Cardiovascular Magnetic Resonance 2018 20 65. (https://doi.org/10.1186/s12968-018-0471-x)

    PubMed  PubMed Central  Google Scholar 

  61. Pellikka PA, She L, Holly TA, Lin G, Varadarajan P, Pai RG, Bonow RO, Pohost GM, Panza JA, Berman DS, et al. Variability in ejection fraction measured by echocardiography, gated single-photon emission computed tomography, and cardiac magnetic resonance in patients with coronary artery disease and left ventricular dysfunction. JAMA Network Open 2018 1 e181456. (https://doi.org/10.1001/jamanetworkopen.2018.1456)

    PubMed  PubMed Central  Google Scholar 

  62. Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, Lassen MH, Fan E, Aras MA, Jordan C, et al. Fully automated echocardiogram interpretation in clinical practice. Circulation 2018 138 1623–1635. (https://doi.org/10.1161/CIRCULATIONAHA.118.034338)

    PubMed  PubMed Central  Google Scholar 

  63. Al’Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, Pandey M, Maliakal G, van Rosendael AR, Beecy AN, et al. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. European Heart Journal 2018. (https://doi.org/10.1093/eurheartj/ehy404)

    Google Scholar 

Download references

Funding

This review did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partho P. Sengupta MD DM.

Rights and permissions

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.(http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seetharam, K., Kagiyama, N. & Sengupta, P.P. Application of mobile health, telemedicine and artificial intelligence to echocardiography. Echo Res Pract 6, R41–R52 (2019). https://doi.org/10.1530/ERP-18-0081

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-18-0081

Key Words