Skip to main content

Left atrial spontaneous echo contrast: relationship with clinical and echocardiographic parameters

Abstract

Spontaneous echo contrast (SEC) indicates blood stasis in cardiac chambers and major vessels, and is a known precursor of thrombus formation. Transesophageal echocardiography plays a pivotal role in detecting and grading SEC in the left atrial (LA) cavity. Assessing LA SEC can identify patients at increased risk for thromboembolic events. LA SEC also develops in patients who have sinus rhythm, especially in those with heart failure. Detection of LA SEC is not uncommon in subjects who have multiple cardiovascular comorbidities, although mechanisms behind this association are not fully understood. In patients with atrial fibrillation, the role of mitral regurgitation in counteracting LA SEC and subsequent thromboembolism is controversial. Moreover, alterations of blood coagulability and elevated levels of certain biological markers in the blood contribute to occurrence of LA SEC. This review describes the pathogenesis and assessment of SEC, in addition to the relationship between LA SEC and clinical, biological and echocardiographic parameters.

References

  1. Gramiak R & Shah PM. Detection of intracardiac blood flow by pulsed echo-ranging ultrasound. Radiology 1971 100 415–418. (https://doi.org/10.1148/100.2.415)

    CAS  PubMed  Google Scholar 

  2. Beppu S, Nimura Y, Sakakibara H, Nagata S, Park YD & Izumi S. Smoke-like echo in the left atrial cavity in mitral valve disease: its features and significance. Journal of the American College of Cardiology 1985 6 744–749. (https://doi.org/10.1016/S0735-1097(85)80476-9)

    CAS  PubMed  Google Scholar 

  3. Erbel R, Stern H, Ehrenthal W, Schreiner G, Treese N, Kramer G, Thelen M, Schweizer P & Meyer J. Detection of spontaneous echocardiographic contrast within the left atrium by transesophageal echocardiography: spontaneous echocardiographic contrast. Clinical Cardiology 1986 9 245–252. (https://doi.org/10.1002/clc.4960090603)

    CAS  PubMed  Google Scholar 

  4. Black IW, Hopkins AP, Lee LC & Walsh WF. Left atrial spontaneous echo contrast: a clinical and echocardiographic analysis. Journal of the American College of Cardiology 1991 18 398–404. (https://doi.org/10.1016/0735-1097(91)90592-W)

    CAS  PubMed  Google Scholar 

  5. Sigel B, Coelho JC, Schade SG, Justin J & Spigos DG. Effect of plasma proteins and temperature on echogenicity of blood. Investigative Radiology 1982 17 29–33. (https://doi.org/10.1097/00004424-198201000-00005)

    CAS  PubMed  Google Scholar 

  6. Sigel B, Machi J, Beitler JC & Justin JR. Red cell aggregation as a cause of blood-flow echogenicity. Radiology 1983 148 799–802. (https://doi.org/10.1148/radiology.148.3.6878705)

    CAS  PubMed  Google Scholar 

  7. Izumida Y, Seiyama A & Maeda N. Erythrocyte aggregation: bridging by macromolecules and electrostatic repulsion by sialic acid. Biochimica and Biophysica Acta 1991 1067 221–226. (https://doi.org/10.1016/0005-2736(91)90047-C)

    CAS  Google Scholar 

  8. Black IW, Chesterman CN, Hopkins AP, Lee LC, Chong BH & Walsh WF. Hematologic correlates of left atrial spontaneous echo contrast and thromboembolism in nonvalvular atrial fibrillation. Journal of the American College of Cardiology 1993 21 451–457. (https://doi.org/10.1016/0735-1097(93)90688-W)

    CAS  PubMed  Google Scholar 

  9. Fatkin D, Loupas T, Jacobs N & Feneley MP. Quantification of blood echogenicity: evaluation of a semiquantitative method of grading spontaneous echo contrast. Ultrasound in Medicine and Biology 1995 21 1191–1198. (https://doi.org/10.1016/0301-5629(95)02006-3)

    CAS  PubMed  Google Scholar 

  10. Black IW, Hopkins AP, Lee LC & Walsh WF. Left atrial spontaneous echo contrast: a clinical and echocardiographic analysis. Journal of the American College of Cardiology 1991 18 398–404. (https://doi.org/10.1016/0735-1097(91)90592-W)

    CAS  PubMed  Google Scholar 

  11. Fatkin D, Kelly RP & Feneley MP. Relations between left atrial appendage blood flow velocity, spontaneous echocardiographic contrast and thromboembolic risk in vivo. Journal of the American College of Cardiology 1994 23 961–969. (https://doi.org/10.1016/0735-1097(94)90644-0)

    CAS  PubMed  Google Scholar 

  12. Black IW. Spontaneous echo contrast: where there’s smoke there’s fire. Echocardiography 2000 17 373–382. (https://doi.org/10.1111/j.1540-8175.2000.tb01153.x)

    CAS  PubMed  Google Scholar 

  13. Schuchman H, Feigenbaum H, Dillon JC & Chang S. Intracavitary echoes in patients with mitral prosthetic valves. Journal of Clinical Ultrasound 1975 3 107–110. (https://doi.org/10.1002/jcu.1870030206)

    CAS  PubMed  Google Scholar 

  14. Ito T, Suwa M, Kobashi A, Yagi H, Nakamura T, Miyazaki S & Kitaura Y. Integrated backscatter assessment of left atrial spontaneous echo contrast in chronic nonvalvular atrial fibrillation: relation with clinical and echocardiographic parameters. Journal of the American Society of Echocardiography 2000 13 666–673. (https://doi.org/10.1067/mje.2000.104739)

    CAS  PubMed  Google Scholar 

  15. Fatkin D, Loupas T, Jacobs N & Feneley MP. Quantification of blood echogenicity: evaluation of a semiquantitative method of grading spontaneous echo contrast. Ultrasound in Medicine and Biology 1995 21 1191–1198. (https://doi.org/10.1016/0301-5629(95)02006-3)

    CAS  PubMed  Google Scholar 

  16. Klein AL, Murray RD, Black IW, Chandra S, Grimm RA, DSa DA, Leung DY, Miller D, Morehead AJ, Vaughn SE, et al. Integrated backscatter for quantification of left atrial spontaneous echo contrast. Journal of the American College of Cardiology 1996 28 222–231.

    CAS  PubMed  Google Scholar 

  17. Ito T, Suwa M, Nakamura T, Miyazaki S, Kobashi A & Kitaura Y. Quantification of left atrial appendage spontaneous echo contrast in patients with chronic nonvalvular atrial fibrillation. Journal of Cardiology 2001 37 325–333.

    CAS  PubMed  Google Scholar 

  18. Beppu S, Nimura Y, Sakakibara H, Nagata S, Park YD & Izumi S. Smoke-like echo in the left atrial cavity in mitral valve disease: its features and significance. Journal of the American College of Cardiology 1985 6 744–749. (https://doi.org/10.1016/S0735-1097(85)80476-9)

    CAS  PubMed  Google Scholar 

  19. Ha JW, Chung N, Kang SM, Jang KJ, Kim IJ, Rim SJ, Jang Y, Shim WH, Cho SY & Kim SS. Enhanced detection of left atrial spontaneous echo contrast by transthoracic harmonic imaging in mitral stenosis. Journal of the American Society of Echocardiography 2000 13 849–854. (https://doi.org/10.1067/mje.2000.106791)

    CAS  PubMed  Google Scholar 

  20. Lowe BS, Kusunose K, Motoki H, Varr B, Shrestha K, Whitman C, Tang WH, Thomas JD & Klein AL. Prognostic significance of left atrial appendage ‘sludge’ in patients with atrial fibrillation: a new transesophageal echocardiographic thromboembolic risk factor. Journal of the American Society of Echocardiography 2014 27 1176–1183. (https://doi.org/10.1016/j.echo.2014.08.016)

    PubMed  Google Scholar 

  21. Hajjiri M, Bernstein S, Saric M, Benenstein R, Aizer A, Dym G, Fowler S, Holmes D, Bernstein N, Mascarenhas M, et al. LAtrial fibrillation ablation in patients with known sludge in the left atrial appendage. Journal of Interventional Cardiac Electrophysiology 2014 40 147–151. (https://doi.org/10.1007/s10840-014-9892-0)

    PubMed  Google Scholar 

  22. Fatkin D, Loupas T, Low J & Feneley M. Inhibition of red cell aggregation prevents spontaneous echocardiographic contrast formation in human blood. Circulation 1997 96 889–896. (https://doi.org/10.1161/01.CIR.96.3.889)

    CAS  PubMed  Google Scholar 

  23. Ito T, Suwa M, Nakamura T, Miyazaki S, Hirota Y & Kawamura K. Influence of warfarin therapy on left atrial spontaneous echo contrast in nonvalvular atrial fibrillation. American Journal of Cardiology 1999 84 857–859, A8. (https://doi.org/10.1016/S0002-9149(99)00451-8)

    CAS  Google Scholar 

  24. Movsowitz C, Movsowitz HD, Jacobs LE, Meyerowitz CB, Podolsky LA & Kotler MN. Significant mitral regurgitation is protective against left atrial spontaneous echo contrast and thrombus as assessed by transesophageal echocardiography. Journal of the American Society of Echocardiography 1993 6 107–114. (https://doi.org/10.1016/S0894-7317(14)80480-X)

    CAS  PubMed  Google Scholar 

  25. Hwang JJ, Shyu KG, Hsu KL, Chen JJ, Kuan P & Lien WP. Significant mitral regurgitation is protective against left atrial spontaneous echo contrast formation, but not against systemic embolism. Chest 1994 106 8–12. (https://doi.org/10.1378/chest.106.1.8)

    CAS  PubMed  Google Scholar 

  26. Nakagami H, Yamamoto K, Ikeda U, Mitsuhashi T, Goto T & Shimada K. Mitral regurgitation reduces the risk of stroke in patients with nonrheumatic atrial fibrillation. American Heart Journal 1998 136 528–532. (https://doi.org/10.1016/S0002-8703(98)70231-5)

    CAS  PubMed  Google Scholar 

  27. Fukuda N, Hirai T, Ohara K, Nakagawa K, Nozawa T & Inoue H. Relation of the severity of mitral regurgitation to thromboembolic risk in patients with atrial fibrillation. International Journal of Cardiology 2011 146 197–201. (https://doi.org/10.1016/j.ijcard.2009.06.051)

    PubMed  Google Scholar 

  28. Ohno Y, Attizzani GF, Capodanno D, Dipasqua F, Barbanti M, Cannata S, Immé S, Ministeri M, Caggegi A, Pistritto AM, et al. Acute left atrial spontaneous echocardiographic contrast and suspicious thrombus formation following mitral regurgitation reduction with the MitraClip system. JACC: Cardiovascular Interventions 2014 7 1322–1323. (https://doi.org/10.1016/j.jcin.2014.04.027)

    PubMed  Google Scholar 

  29. Bekeredjian R, Mereles D, Pleger S, Krumsdorf U, Katus HA & Rottbauer W. Large atrial thrombus formation after MitraClip implantation: is anticoagulation mandatory? Journal of Heart Valve Disease 2011 20 146–148.

    Google Scholar 

  30. Hamm K, Barth S, Diegeler A & Kerber S. Stroke and thrombus formation appending to the MitraClip: what is the appropriate anticoagulation regimen? Journal of Heart Valve Disease 2013 22 713–715.

    Google Scholar 

  31. Yu GI, Cho KI, Kim HS, Heo JH & Cha TJ. Association between the N-terminal plasma brain natriuretic peptide levels or elevated left ventricular filling pressure and thromboembolic risk in patients with non-valvular atrial fibrillation. Journal of Cardiology 2016 68 110–116. (https://doi.org/10.1016/j.jjcc.2015.11.015)

    PubMed  Google Scholar 

  32. Doukky R, Gage H, Nagarajan V, Demopoulos A, Cena M, Garcia-Sayan E, Karam GJ & Kazlauskaite R. B-type natriuretic peptide predicts left atrial appendage thrombus in patients with nonvalvular atrial fibrillation. Echocardiography 2013 30 889–895. (https://doi.org/10.1111/echo.12169)

    PubMed  Google Scholar 

  33. Iwakura K, Okamura A, Koyama Y, Date M, Higuchi Y, Inoue K, Kimura R, Nagai H, Toyoshima Y, Ozawa M, et al. Effect of elevated left ventricular diastolic filling pressure on the frequency of left atrial appendage thrombus in patients with nonvalvular atrial fibrillation. American Journal of Cardiology 2011 107 417–422. (https://doi.org/10.1016/j.amjcard.2010.09.042)

    Google Scholar 

  34. Tabata T, Oki T, Fukuda N, Iuchi A, Manabe K, Kageji Y, Sasaki M, Yamada H & Ito S. Influence of left atrial pressure on left atrial appendage flow velocity patterns in patients in sinus rhythm. Journal of the American Society of Echocardiography 1996 9 857–864. (https://doi.org/10.1016/S0894-7317(96)90478-2)

    CAS  PubMed  Google Scholar 

  35. Hoit BD, Shao Y & Gabel M. Influence of acutely altered loading conditions on left atrial appendage flow velocities. Journal of the American College of Cardiology 1994 24 1117–1123. (https://doi.org/10.1016/0735-1097(94)90878-8)

    CAS  PubMed  Google Scholar 

  36. Ito T, Suwa M, Kobashi A, Yagi H, Hirota Y & Kawamura K. Influence of altered loading conditions on left atrial appendage function in vivo. American Journal of Cardiology 1998 81 1056–1059. (https://doi.org/10.1016/S0002-9149(98)00011-3)

    CAS  Google Scholar 

  37. Puwanant S, Varr BC, Shrestha K, Hussain SK, Tang WH, Gabriel RS, Wazni OM, Bhargava M, Saliba WI, Thomas JD, et al. Role of the CHADS2 score in the evaluation of thromboembolic risk in patients with atrial fibrillation undergoing transesophageal echocardiography before pulmonary vein isolation. Journal of the American College of Cardiology 2009 54 2032–2039. (https://doi.org/10.1016/j.jacc.2009.07.037)

    PubMed  Google Scholar 

  38. Zhang E, Liu T, Li Z, Zhao J & Li G. High CHA2DS2-VASc score predicts left atrial thrombus or spontaneous echo contrast detected by transesophageal echocardiography. International Journal of Cardiology 2015 184 540–542. (https://doi.org/10.1016/j.ijcard.2015.02.109)

    PubMed  Google Scholar 

  39. Topaz G, Pereg D, Shuvy M, Mausbach S, Kimiagar I, Telman G, Kitay-Cohen Y, Vorobeichik D, Shlomo N & Tanne D. Pre-admission CHA2DS2-VASc score and outcome of patients with acute cerebrovascular events. International Journal of Cardiology 2017 244 277–281. (https://doi.org/10.1016/j.ijcard.2017.06.057)

    PubMed  Google Scholar 

  40. Liu T, Shao Q, Korantzopoulos P, Miao S, Zhang Z, Xu G, Yuan R & Li G. Relation of red blood cell distribution width with CHADS2 and CHA2DS2-VASc score in Chinese patients with non-valvular atrial fibrillation. International Journal of Cardiology 2017 228 861–864. (https://doi.org/10.1016/j.ijcard.2016.11.255)

    PubMed  Google Scholar 

  41. Hijazi Z, Oldgren J, Siegbahn A, Granger CB & Wallentin L. Biomarkers in atrial fibrillation: a clinical review. European Heart Journal 2013 34 1475–1480. (https://doi.org/10.1093/eurheartj/eht024)

    CAS  PubMed  Google Scholar 

  42. Crandall MA, Horne BD, Day JD, Anderson JL, Muhlestein JB, Crandall BG, Weiss JP, Lappé DL & Bunch TJ. Atrial fibrillation and CHADS2 risk factors are associated with highly sensitive C-reactive protein incrementally and independently. Pacing and Clinical Electrophysiology 2009 32 648–652. (https://doi.org/10.1111/j.1540-8159.2009.02339.x)

    PubMed  Google Scholar 

  43. Leitman M, Sidenko S, Peleg E, Wolf R, Sucher E, Rosenblath S & Vered Z. Improved detection of spontaneous echo contrast in the aorta with tissue Doppler imaging. Echocardiography 2004 21 503–508. (https://doi.org/10.1111/j.0742-2822.2004.03065.x)

    PubMed  Google Scholar 

  44. Maehama T, Okura H, Imai K, Yamada R, Obase K, Saito K, Hayashida A, Neishi Y, Kawamoto T & Yoshida K. Usefulness of CHADS2 score to predict C-reactive protein, left atrial blood stasis, and prognosis in patients with nonrheumatic atrial fibrillation. American Journal of Cardiology 2010 106 535–538. (https://doi.org/10.1016/j.amjcard.2010.03.067)

    CAS  Google Scholar 

  45. Abu-Mahfouz M, Cavalcante JL, Arida M, Garcia J, Al-Mallah M, Boguszewski A, Haque S, Rehman M, Al Badarin F, Akhras E, et al. Significance of high sensitivity C-reactive protein and D-dimer in evaluating intracardiac thrombus and spontaneous echo contrast in patients referred for transesophageal echocardiography: a prospective study. Cardiology Journal 2012 19 267–273. (https://doi.org/10.5603/CJ.2012.0048)

    PubMed  Google Scholar 

  46. Heppell RM, Berkin KE, McLenachan JM & Davies JA. Haemostatic and haemodynamic abnormalities associated with left atrial thrombosis in non-rheumatic atrial fibrillation. Heart 1997 77 407–411. (https://doi.org/10.1136/hrt.77.5.407)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wan H, Wu S, Yang Y, Zhu J, Zhang A & Liang Y. Plasma fibrin D-dimer and the risk of left atrial thrombus: a systematic review and meta-analysis. PLoS ONE 2017 12 e0172272. (https://doi.org/10.1371/journal.pone.0172272)

    PubMed  PubMed Central  Google Scholar 

  48. Yashiro Y, Arimoto T, Hashimoto N, Tamura H, Iwayama T, Ishigaki D, Kumagai Y, Nishiyama S, Takahashi H, Shishido T, et al. Predictors of left atrial coagulation activity among paroxysmal atrial fibrillation patients. Circulation Journal 2015 79 61–69. (https://doi.org/10.1253/circj.CJ-14-0630)

    PubMed  Google Scholar 

  49. Motoki H, Tomita T, Aizawa K, Kasai H, Izawa A, Kumazaki S, Tsutsui H, Koyama J & Ikeda U. Coagulation activity is increased in the left atria of patients with paroxysmal atrial fibrillation during the non-paroxysmal period. Comparison with chronic atrial fibrillation. Circulation Journal 2009 73 1403–1407. (https://doi.org/10.1253/circj.CJ-09-0008)

    PubMed  Google Scholar 

Download references

Funding

This paper did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahide Ito MD PhD.

Rights and permissions

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.(http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, T., Suwa, M. Left atrial spontaneous echo contrast: relationship with clinical and echocardiographic parameters. Echo Res Pract 6, R65–R73 (2019). https://doi.org/10.1530/ERP-18-0083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-18-0083

Key Words