Skip to main content

Global longitudinal strain in chronic asymptomatic aortic regurgitation: systematic review

Abstract

Chronic aortic regurgitation (AR) patients typically remain asymptomatic for a long time. Left ventricular mechanics, namely global longitudinal strain (GLS), has been associated with outcomes in AR patients. The authors conducted a systematic review to summarize and appraise GLS impact on mortality, the need for aortic valve replacement (AVR) and disease progression in AR patients. A literature search was performed using these key terms ‘aortic regurgitation’ and ‘longitudinal strain’ looking at all randomized and nonrandomized studies conducted on chronic aortic regurgitation. The search yielded six observational studies published from 2011 and 2018 with a total of 1571 patients with moderate to severe chronic AR. Only two studies included all-cause mortality as their endpoint. The other studies looked at the association between GLS with AVR and disease progression. The mean follow-up period was 4.2 years. We noted a great variability of clinical, methodological and/or statistical origin. Thus, meta-analytic portion of our study was limited. Despite a relevant heterogeneity, an impaired GLS was associated with adverse cardiac outcomes. Left ventricular GLS may offer incremental value in risk stratification and decision-making.

References

  1. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, Iung B, Lancellotti P, Lansac E, Muñoz DR, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. European Heart Journal 2017 38 2739–2791. (https://doi.org/10.1093/eurheartj/ehx391)

    Article  Google Scholar 

  2. Chaliki HP, Mohty D, Avierinos JF, Scott CG, Schaff HV, Tajik AJ, Enriquez-Sarano M. Outcomes after aortic valve replacement in patients with severe aortic regurgitation and markedly reduced left ventricular function. Circulation 2002 106 2687–2693. (https://doi.org/10.1161/01.cir.0000038498.59829.38)

    Article  Google Scholar 

  3. Bonow RO, Lakatos E, Maron BJ, Epstein SE. Serial long-term assessment of the natural history of asymptomatic patients with chronic aortic regurgitation and normal left ventricular systolic function. Circulation 1991 84 1625–1635. (https://doi.org/10.1161/01.cir.84.4.1625)

    Article  CAS  Google Scholar 

  4. Krayenbuehl HP, Hess OM, Monrad ES, Schneider J, Mall G, Turina M. Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement. Circulation 1989 79 744–755. (https://doi.org/10.1161/01.cir.79.4.744)

    Article  CAS  Google Scholar 

  5. Azevedo CF, Nigri M, Higuchi ML, Pomerantzeff PM, Spina GS, Sampaio RO, Tarasoutchi F, Grinberg M, Rochitte CE. Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. Journal of the American College of Cardiology 2010 56 278–287. (https://doi.org/10.1016/j.jacc.2009.12.074)

    Article  Google Scholar 

  6. Cameli M, Mondillo S, Righini FM, Lisi M, Dokollari A, Lindqvist P, Maccherini M, Henein M. Left ventricular deformation and myocardial fibrosis in patients with advanced heart failure requiring transplantation. Journal of Cardiac Failure 2016 22 901–907. (https://doi.org/10.1016/j.cardfail.2016.02.012)

    Article  Google Scholar 

  7. Katbeh A, Ondrus T, Barbato E, Galderisi M, Trimarco B, Van Camp G, Vanderheyden M, Penicka M. Imaging of myocardial fibrosis and its functional correlates in aortic stenosis: a review and clinical potential. Cardiology 2018 141 141–149. (https://doi.org/10.1159/000493164)

    Article  Google Scholar 

  8. Popović ZB, Desai MY, Griffin BP. Decision making with imaging in asymptomatic aortic regurgitation. JACC: Cardiovascular Imaging 2018 11 1499–1513. (https://doi.org/10.1016/j.jcmg.2018.05.027)

    PubMed  Google Scholar 

  9. Alashi A, Mentias A, Abdallah A, Feng K, Gillinov AM, Rodriguez LL, Johnston DR, Svensson LG, Popovic ZB, Griffin BP, et al. Incremental prognostic utility of left ventricular global longitudinal strain in asymptomatic patients with significant chronic aortic regurgitation and preserved left ventricular ejection fraction. JACC: Cardiovascular Imaging 2018 11 673–682. (https://doi.org/10.1016/j.jcmg.2017.02.016)

    PubMed  Google Scholar 

  10. Kusunose K, Agarwal S, Marwick TH, Griffin BP, Popović ZB. Decision making in asymptomatic aortic regurgitation in the era of guidelines incremental values of resting and exercise cardiac dysfunction. Circulation: Cardiovascular Imaging 2014 7 352–362. (https://doi.org/10.1161/CIRCIMAGING.113.001177)

    Google Scholar 

  11. Ewe SH, Haeck ML, Ng AC, Witkowski TG, Auger D, Leong DP, Abate E, Marsan NA, Holman ER, Schalij MJ, et al. Detection of subtle left ventricular systolic dysfunction in patients with significant aortic regurgitation and preserved left ventricular ejection fraction: speckle tracking echocardiographic analysis. European Heart Journal Cardiovascular Imaging 2015 16 992–999. (https://doi.org/10.1093/ehjci/jev019)

    PubMed  Google Scholar 

  12. Olsen NT, Sogaard P, Larsson HB, Goetze JP, Jons C, Mogelvang R, Nielsen OW, Fritz-Hansen T. Speckle-tracking echocardiography for predicting outcome in chronic aortic regurgitation during conservative management and after surgery. JACC: Cardiovascular Imaging 2011 4 223–230. (https://doi.org/10.1016/j.jcmg.2010.11.016)

    PubMed  Google Scholar 

  13. Verseckaite R, Mizariene V, Montvilaite A, Auguste I, Bieseviciene M, Laukaitiene J, Jonkaitiene R, Jurkevicius R. The predictive value of left ventricular myocardium mechanics evaluation in asymptomatic patients with aortic regurgitation and preserved left ventricular ejection fraction. A long-term speckle-tracking echocardiographic study. Echocardiography 2018 35 1277–1288. (https://doi.org/10.1111/echo.14030)

    Article  Google Scholar 

  14. Park SH, Yang YA, Kim KY, Park SM, Kim HN, Kim JH, Jang SY, Hwan Bae MH, Lee JH, Yang DH. Left ventricular strain as predictor of chronic aortic regurgitation. Journal of Cardiovascular Ultrasound 2015 23 78–85. (https://doi.org/10.4250/jcu.2015.23.2.78)

    Article  Google Scholar 

  15. Gorcsan J, Tanaka H. Echocardiographic assessment of myocardial strain. Journal of the American College of Cardiology 2011 58 1401–1413. (https://doi.org/10.1016/j.jacc.2011.06.038)

    Article  Google Scholar 

  16. Nesbitt GC, Mankad S, Oh JK. Strain imaging in echocardiography: methods and clinical applications. International Journal of Cardiovascular Imaging 2009 25 (Supplement 1) 9–22. (https://doi.org/10.1007/s10554-008-9414-1)

    Article  Google Scholar 

  17. Zito C, Longobardo L, Citro R, Galderisi M, Oreto L, Carerj ML, Manganaro R, Cusmà-Piccione M, Todaro MC, Di Bella G, et al. Ten years of 2D longitudinal strain for early myocardial dysfunction detection: a clinical overview. BioMed Research International 2018 2018 8979407. (https://doi.org/10.1155/2018/8979407)

    Article  Google Scholar 

  18. Mentz RJ, Khouri MG. Longitudinal strain in heart failure with preserved ejection fraction: is there a role for prognostication? Circulation 2015 132 368–370. (https://doi.org/10.1161/CIRCULATIONAHA.115.017683)

    Article  Google Scholar 

  19. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: a systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 2014 100 1673–1680. (https://doi.org/10.1136/heartjnl-2014-305538)

    Article  Google Scholar 

  20. Yip GW, Zhang Q, Xie JM, Liang YJ, Liu YM, Yan B, Lam YY, Yu CM. Resting global and regional left ventricular contractility in patients with heart failure and normal ejection fraction: insights from speckle-tracking echocardiography. Heart 2011 97 287–294. (https://doi.org/10.1136/hrt.2010.205815)

    Article  Google Scholar 

  21. Stokke TM, Hasselberg NE, Smedsrud MK, Sarvari SI, Haugaa KH, Smiseth OA, Edvardsen T, Remme EW. Geometry as a confounder when assessing ventricular systolic function: comparison between ejection fraction and strain. Journal of the American College of Cardiology 2017 70 942–954. (https://doi.org/10.1016/j.jacc.2017.06.046)

    Article  Google Scholar 

  22. Spartera M, Damascelli A, Mozes F, De Cobelli F, La Canna G. Three-dimensional speckle tracking longitudinal strain is related to myocardial fibrosis determined by late-gadolinium enhancement. International Journal of Cardiovascular Imaging 2017 33 1351–1360. (https://doi.org/10.1007/s10554-017-1115-1)

    Article  Google Scholar 

  23. Jayam M, Janosevic D, Kadiyala M, Cao JJ, Pollack S, Reichek N. Afterload excess and myocardial performance. Journal of Cardiovascular Magnetic Resonance 2013 15 (Supplement1) 1–2.

    Article  Google Scholar 

  24. Dahl JS, Magne J, Pellikka PA, Donal E, Marwick TH. Assessment of subclinical left ventricular dysfunction in aortic stenosis. JACC: Cardiovascular Imaging 2019 12 163–171. (https://doi.org/10.1016/j.jcmg.2018.08.040)

    PubMed  Google Scholar 

  25. Kim HM, Cho GY, Hwang IC, Choi HM, Park JB, Yoon YE, Kim HK. Myocardial strain in prediction of outcomes after surgery for severe mitral regurgitation. JACC: Cardiovascular Imaging 2018 11 1235–1244. (https://doi.org/10.1016/j.jcmg.2018.03.016)

    PubMed  Google Scholar 

  26. Mentias A, Desai MY. Markers of increased risk in primary mitral regurgitation. Annals of Translational Medicine 2017 5 338. (https://doi.org/10.21037/atm.2017.04.08)

    Article  Google Scholar 

  27. Yang LT, Michelena HI, Scott CG, Enriquez-Sarano M, Pislaru SV, Schaff HV, Pellikka PA. Outcomes in chronic hemodynamically significant aortic regurgitation and limitations of current guidelines. Journal of the American College of Cardiology 2019 73 1741–1752. (https://doi.org/10.1016/j.jacc.2019.01.024)

    Article  Google Scholar 

  28. Yingchoncharoen T, Agarwal S, Popović ZB, Marwick TH. Normal ranges of left ventricular strain: a meta-analysis. Journal of the American Society of Echocardiography 2013 26 185–191. (https://doi.org/10.1016/j.echo.2012.10.008)

    Article  Google Scholar 

  29. Marwick TH. Will standardization make strain a standard measurement? Journal of the American Society of Echocardiography 2012 25 1204–1206. (https://doi.org/10.1016/j.echo.2012.09.017)

    Article  Google Scholar 

Download references

Funding

This work did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Teixeira MD PhD.

Additional information

This author takes responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

Rights and permissions

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.(http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

deCampos, D., Teixeira, R., Saleiro, C. et al. Global longitudinal strain in chronic asymptomatic aortic regurgitation: systematic review. Echo Res Pract 7, 39–48 (2020). https://doi.org/10.1530/ERP-20-0024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-20-0024

Key Words