Skip to main content
  • Guidelines and Recommendations
  • Open access
  • Published:

Echocardiographic assessment of the tricuspid and pulmonary valves: a practical guideline from the British Society of Echocardiography

Abstract

Transthoracic echocardiography is the first-line imaging modality in the assessment of right-sided valve disease. The principle objectives of the echocardiographic study are to determine the aetiology, mechanism and severity of valvular dysfunction, as well as consequences on right heart remodelling and estimations of pulmonary artery pressure. Echocardiographic data must be integrated with symptoms, to inform optimal timing and technique of interventions. The most common tricuspid valve abnormality is regurgitation secondary to annular dilatation in the context of atrial fibrillation or left-sided heart disease. Significant pulmonary valve disease is most commonly seen in congenital heart abnormalities. The aetiology and mechanism of tricuspid and pulmonary valve disease can usually be identified by 2D assessment of leaflet morphology and motion. Colour flow and spectral Doppler are required for assessment of severity, which must integrate data from multiple imaging planes and modalities. Transoesophageal echo is used when transthoracic data is incomplete, although the anterior position of the right heart means that transthoracic imaging is often superior. Three-dimensional echocardiography is a pivotal tool for accurate quantification of right ventricular volumes and regurgitant lesion severity, anatomical characterisation of valve morphology and remodelling pattern, and procedural guidance for catheter-based interventions. Exercise echocardiography may be used to elucidate symptom status and demonstrate functional reserve. Cardiac magnetic resonance and CT should be considered for complimentary data including right ventricular volume quantification, and precise cardiac and extracardiac anatomy. This British Society of Echocardiography guideline aims to give practical advice on the standardised acquisition and interpretation of echocardiographic data relating to the pulmonary and tricuspid valves.

References

  1. Zaidi A, Knight DS, Augustine DX, Harkness A, Oxborough D, Pearce K, Ring L, Robinson S, Stout M, Willis J et al. Echocardiographic assessment of the right heart in adults: a practical guideline from the British Society of Echocardiography. Echo Research and Practice 2020 7 G19–G41. (https://doi.org/10.1530/ERP-19-0051)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kwak JJ, Kim YJ, Kim MK, Kim HK, Park JS, Kim KH, Kim KB, Ahn H, Sohn DW, Oh BH et al. Development of tricuspid regurgitation late after left-sided valve surgery: a single-center experience with long-term echocardiographic examinations. American Heart Journal 2008 155 732–737. (https://doi.org/10.1016/j.ahj.2007.11.010)

    Article  PubMed  Google Scholar 

  3. Shiran A, Najjar R, Adawi S, Aronson D Risk factors for progression of functional tricuspid regurgitation. American Journal of Cardiology 2014 113 995–1000. (https://doi.org/10.1016/j.amjcard.2013.11.055)

    Article  Google Scholar 

  4. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014 129 2440–2492. (https://doi.org/10.1161/CIR.0000000000000029)

    Article  PubMed  Google Scholar 

  5. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, Iung B, Lancellotti P, Lansac E, Muñoz DR et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. European Heart Journal 2017 38 2739–2791. (https://doi.org/10.1093/eurheartj/ehx391)

    Article  PubMed  Google Scholar 

  6. Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, Hahn RT, Han Y, Hung J, Lang RM et al. Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance. Journal of the American Society of Echocardiography 2017 30 303–371. (https://doi.org/10.1016/j.echo.2017.01.007)

    Article  PubMed  Google Scholar 

  7. Addetia K, Muraru D, Veronesi F, Jenei C, Cavalli G, Besser SA, Mor-Avi V, Lang RM, Badano LP 3-Dimensional echocardiographic analysis of the tricuspid annulus provides new insights into tricuspid valve geometry and dynamics. JACC: Cardiovascular Imaging 2019 12 401–412. (https://doi.org/10.1016/j.jcmg.2017.08.022)

    PubMed  Google Scholar 

  8. Fukuda S, Saracino G, Matsumura Y, Daimon M, Tran H, Greenberg NL, Hozumi T, Yoshikawa J, Thomas JD, Shiota T Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study. Circulation 2006 114 (Supplement) I492–I498. (https://doi.org/10.1161/CIRCULATIONAHA.105.000257)

    Article  PubMed  Google Scholar 

  9. Hahn RT State-of-the-art review of echocardiographic imaging in the evaluation and treatment of functional tricuspid regurgitation. Circulation: Cardiovascular Imaging 2016 9 1–15. (https://doi.org/10.1161/CIRCIMAGING.116.005332)

    Google Scholar 

  10. Adler DS Non-functional tricuspid valve disease. Annals of Cardiothoracic Surgery 2017 6 204–213. (https://doi.org/10.21037/acs.2017.04.04)

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rana BS, Robinson S, Francis R, Toshner M, Swaans MJ, Agarwal S, De Silva R, Rana AA, Nihoyannopoulos P Tricuspid regurgitation and the right ventricle in risk stratification and timing of intervention. Echo Research and Practice 2019 6 R25–R39. (https://doi.org/10.1530/ERP-18-0051)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bhattacharyya S, Davar J, Dreyfus G, Caplin ME Carcinoid heart disease. Circulation 2007 116 2860–2865. (https://doi.org/10.1161/CIRCULATIONAHA.107.701367)

    Article  PubMed  Google Scholar 

  13. Badano LP, Agricola E, Perez de Isla L, Gianfagna P, Zamorano JL Evaluation of the tricuspid valve morphology and function by transthoracic real-time three-dimensional echocardiography. European Journal of Echocardiography 2009 10 477–484. (https://doi.org/10.1093/ejechocard/jep044)

    Article  PubMed  Google Scholar 

  14. Muraru D, Guta AC, Ochoa-Jimenez RC, Bartos D, Aruta P, Mihaila S, Popescu BA, Iliceto S, Basso C, Badano LP Functional regurgitation of atrioventricular valves and atrial fibrillation: an elusive pathophysiological link deserving further attention. Journal of the American Society of Echocardiography 2020 33 42–53. (https://doi.org/10.1016/j.echo.2019.08.016)

    Article  PubMed  Google Scholar 

  15. Badano LP, Hahn R, Zanella H, Araiza Garaygordobil D, Ochoa-Jimenez RC, Muraru D Morphological assessment of the tricuspid apparatus and grading regurgitation severity in patients with functional tricuspid regurgitation: thinking outside the box. Journal of the American College of Cardiology: Imaging 2019 12 652–664. (https://doi.org/10.1016/j.jcmg.2018.09.029)

    Article  Google Scholar 

  16. Silbiger JJ Atrial functional tricuspid regurgitation: an underappreciated cause of secondary tricuspid regurgitation. Echocardiography 2019 36 954–957. (https://doi.org/10.1111/echo.14327)

    Article  PubMed  Google Scholar 

  17. Kim HK, Kim YJ, Park EA, Bae JS, Lee W, Kim KH, Kim KB, Sohn DW, Ahn H, Park JH et al. Assessment of haemodynamic effects of surgical correction for severe functional tricuspid regurgitation: cardiac magnetic resonance imaging study. European Heart Journal 2010 31 1520–1528. (https://doi.org/10.1093/eurheartj/ehq063)

    Article  PubMed  Google Scholar 

  18. Kim HK, Kim YJ, Park JS, Kim KH, Kim KB, Ahn H, Sohn DW, Oh BH, Park YB, Choi YS Determinants of the severity of functional tricuspid regurgitation. American Journal of Cardiology 2006 98 236–242. (https://doi.org/10.1016/j.amjcard.2006.01.082)

    Article  Google Scholar 

  19. Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, Iung B, Otto CM, Pellikka PA, Quiñones M et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. European Journal of Echocardiography 2009 10 1–25. (https://doi.org/10.1093/ejechocard/jen303)

    Article  PubMed  Google Scholar 

  20. Thomas JD, Liu CM, Flachskampf FA, O’Shea JP, Davidoff R, Weyman AE Quantification of jet flow by momentum analysis: an in vitro color Doppler flow study. Circulation 1990 81 247–259. (https://doi.org/10.1161/01.cir.81.1.247)

    Article  CAS  PubMed  Google Scholar 

  21. Lancellotti P, Tribouilloy C, Hagendorff A, Popescu BA, Edvardsen T, Pierard LA, Badano L, Zamorano JLScientific Document Committee of the European Association of Cardiovascular Imaging. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging 2013 14 611–644. (https://doi.org/10.1093/ehjci/jet105)

    Article  PubMed  Google Scholar 

  22. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography. Endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. Journal of the American Society of Echocardiography 2010 23 685–713; quiz 786. (https://doi.org/10.1016/j.echo.2010.05.010)

    Article  PubMed  Google Scholar 

  23. Karp K, Teie D, Eriksson P Doppler echocardiographic assessment of the valve area in patients with atrioventricular valve stenosis by application of the continuity equation. Journal of Internal Medicine 1989 225 261–266. (https://doi.org/10.1111/j.1365-2796.1989.tb00076.x)

    Article  CAS  PubMed  Google Scholar 

  24. Antunes MJ, Barlow JB Management of tricuspid valve regurgitation. Heart 2007 93 271–276. (https://doi.org/10.1136/hrt.2006.095281)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Prihadi EA, Van Der Bijl P, Dietz M, Abou R, Vollema EM, Marsan NA, Delgado V, Bax JJ Prognostic implications of right ventricular free wall longitudinal strain in patients with significant functional tricuspid regurgitation. Circulation. Cardiovascular Imaging 2019 12 e008666. (https://doi.org/10.1161/CIRCIMAGING.118.008666)

    Article  PubMed  Google Scholar 

  26. Nath J, Foster E, Heidenreich PA Impact of tricuspid regurgitation on long-term survival. Journal of the American College of Cardiology 2004 43 405–409. (https://doi.org/10.1016/j.jacc.2003.09.036)

    Article  PubMed  Google Scholar 

  27. Kammerlander AA, Marzluf BA, Graf A, Bachmann A, Kocher A, Bonderman D, Mascherbauer J Right ventricular dysfunction, but not tricuspid regurgitation, is associated with outcome late after left heart valve procedure. Journal of the American College of Cardiology 2014 64 2633–2642. (https://doi.org/10.1016/j.jacc.2014.09.062)

    Article  PubMed  Google Scholar 

  28. Bouzas B, Kilner PJ, Gatzoulis MA Pulmonary regurgitation: not a benign lesion. European Heart Journal 2005 26 433–439. (https://doi.org/10.1093/eurheartj/ehi091)

    Article  PubMed  Google Scholar 

  29. Driessen MMP, Leiner T, Sieswerda GT, Van Dijk APJ, Post MC, Friedberg MK, Mertens L, Doevendans PA, Snijder RJ, Hulzebos EH et al. RV adaptation to increased afterload in congenital heart disease and pulmonary hypertension. PLoS ONE 2018 13 1–17. (https://doi.org/10.1371/journal.pone.0205196)

    Article  Google Scholar 

  30. Ruckdeschel E, Kim YY Pulmonary valve stenosis in the adult patient: pathophysiology, diagnosis and management. Heart 2019 105 414–422. (https://doi.org/10.1136/heartjnl-2017-312743)

    PubMed  Google Scholar 

  31. Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF An echocardiographic index for separation of right ventricular volume and pressure overload. Journal of the American College of Cardiology 1985 5 918–927. (https://doi.org/10.1016/s0735-1097(8580433-2)

    Article  CAS  PubMed  Google Scholar 

  32. Vaideeswar P & Butany J Valvular Heart Disease. In Cardiovascular Pathology (fourth edition), ch 12, pp 485–528. Eds Buja LM & Butany J. Cambridge, MA, USA: Academic Press. (https://doi.org/10.1016/B978-0-12-420219-1.00012-4)

  33. Wheeler R, Steeds R, Rana B, Wharton G, Smith N, Allen J, Chambers J, Jones R, Lloyd G, O’Gallagher K et al. A minimum dataset for a standard transoesophageal echocardiogram: a guideline protocol from the British Society of Echocardiography. Echo Research and Practice 2015 2 G29–G45. (https://doi.org/10.1530/ERP-15-0024)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Muraru D, Spadotto V, Cecchetto A, Romeo G, Aruta P, Ermacora D, Jenei C, Cucchini U, Iliceto S, Badano LP New speckle-tracking algorithm for right ventricular volume analysis from three-dimensional echocardiographic data sets: validation with cardiac magnetic resonance and comparison with the previous analysis tool. European Heart Journal Cardiovascular Imaging 2016 17 1279–1289. (https://doi.org/10.1093/ehjci/jev309)

    Article  PubMed  Google Scholar 

  35. Shimada YJ, Shiota M, Siegel RJ, Shiota T Accuracy of right ventricular volumes and function determined by three-dimensional echocardiography in comparison with magnetic resonance imaging: a meta-analysis study. Journal of the American Society of Echocardiography 2010 23 943–953. (https://doi.org/10.1016/j.echo.2010.06.029)

    Article  PubMed  Google Scholar 

  36. Nagata Y, Wu VCC, Kado Y, Otani K, Lin FC, Otsuji Y, Negishi K, Takeuchi M Prognostic value of right ventricular ejection fraction assessed by transthoracic 3D echocardiography. Circulation: Cardiovascular Imaging 2017 10 1–10. (https://doi.org/10.1161/CIRCIMAGING.116.005384)

    Google Scholar 

  37. Maffessanti F, Muraru D, Esposito R, Gripari P, Ermacora D, Santoro C, Tamborini G, Galderisi M, Pepi M, Badano LP Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circulation: Cardiovascular Imaging 2013 6 700–710. (https://doi.org/10.1161/CIRCIMAGING.113.000706)

    Google Scholar 

  38. Medvedofsky D, Mor-Avi V, Kruse E, Guile B, Ciszek B, Weinert L, Yamat M, Volpato V, Addetia K, Patel AR et al. Quantification of right ventricular size and function from contrast-enhanced three-dimensional echocardiographic images. Journal of the American Society of Echocardiography 2017 30 1193–1202. (https://doi.org/10.1016/j.echo.2017.08.003)

    Article  PubMed  Google Scholar 

  39. Kelly NFA, Platts DG, Burstow DJ Feasibility of pulmonary valve imaging using three-dimensional transthoracic echocardiography. Journal of the American Society of Echocardiography 2010 23 1076–1080. (https://doi.org/10.1016/j.echo.2010.06.015)

    Article  PubMed  Google Scholar 

  40. Hadeed K, Hascoët S, Amadieu R, Dulac Y, Breinig S, Cazavet A, Cuttone F, Leóbon B, Acar P 3D transthoracic echocardiography to assess pulmonary valve morphology and annulus size in patients with tetralogy of Fallot. Archives of Cardiovascular Diseases 2016 109 87–95. (https://doi.org/10.1016/j.acvd.2015.12.001)

    Article  PubMed  Google Scholar 

  41. Muraru D, Hahn RT, Soliman OI, Faletra FF, Basso C, Badano LP 3-Dimensional echocardiography in imaging the tricuspid valve. JACC: Cardiovascular Imaging 2019 12 500–515. (https://doi.org/10.1016/j.jcmg.2018.10.035)

    PubMed  Google Scholar 

  42. Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, Faletra FF, Franke A, Hung J, Peŕez De Isla L et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. European Heart Journal: Cardiovascular Imaging 2012 13 1–46. (https://doi.org/10.1093/ehjci/jer316)

    PubMed  Google Scholar 

  43. Badano LP, Caravita S, Rella V, Guida V, Parati G, Muraru D The added value of 3-dimensional echocardiography to understand the pathophysiology of functional tricuspid regurgitation. JACC: Cardiovascular Imaging 2020 [epub]. (https://doi.org/10.1016/j.jcmg.2020.04.029)

    Google Scholar 

  44. Ton-Nu TT, Levine RA, Handschumacher MD, Dorer DJ, Yosefy C, Fan D, Hua L, Jiang L, Hung J Geometric determinants of functional tricuspid regurgitation: insights from 3-dimensional echocardiography. Circulation 2006 114 143–149. (https://doi.org/10.1161/CIRCULATIONAHA.106.611889)

    Article  PubMed  Google Scholar 

  45. Bhatt HV, Spivack J, Patel PR, El-Eshmawi A, Amir Y, Adams DH, Fischer GW Correlation of 2-dimensional and 3-dimensional echocardiographic analysis to surgical measurements of the tricuspid valve annular diameter. Journal of Cardiothoracic and Vascular Anesthesia 2019 33 137–145. (https://doi.org/10.1053/j.jvca.2018.05.048)

    Article  PubMed  Google Scholar 

  46. Dreyfus J, Durand-Viel G, Raffoul R, Alkhoder S, Hvass U, Radu C, Al-Attar N, Ghodbhane W, Attias D, Nataf P et al. Comparison of 2-dimensional, 3-dimensional, and surgical measurements of the tricuspid annulus size: clinical implications. Circulation: Cardiovascular Imaging 2015 8 e003241. (https://doi.org/10.1161/CIRCIMAGING.114.003241)

    Google Scholar 

  47. Anwar AM, Soliman OII, Nemes A, van Geuns RJM, Geleijnse ML, ten Cate FJ Value of assessment of tricuspid annulus: real-time three-dimensional echocardiography and magnetic resonance imaging. International Journal of Cardiovascular Imaging 2007 23 701–705. (https://doi.org/10.1007/s10554-006-9206-4)

    Article  Google Scholar 

  48. Chen TE, Kwon SH, Enriquez-Sarano M, Wong BF, Mankad SV Three-dimensional color Doppler echocardiographic quantification of tricuspid regurgitation orifice area: comparison with conventional two-dimensional measures. Journal of the American Society of Echocardiography 2013 26 1143–1152. (https://doi.org/10.1016/j.echo.2013.07.020)

    Article  PubMed  Google Scholar 

  49. De Agustin JA, Viliani D, Vieira C, Islas F, Marcos-Alberca P, Gomez De Diego JJ, Nuñez-Gil IJ, Almeria C, Rodrigo JL, Luaces M et al. Proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography applied for tricuspid regurgitation quantification. Journal of the American Society of Echocardiography 2013 26 1063–1072. (https://doi.org/10.1016/j.echo.2013.06.006)

    Article  PubMed  Google Scholar 

  50. Hahn RT, Zamorano JL The need for a new tricuspid regurgitation grading scheme. European Heart Journal Cardiovascular Imaging 2017 18 1342–1343. (https://doi.org/10.1093/ehjci/jex139)

    Article  PubMed  Google Scholar 

  51. Velayudhan DE, Brown TM, Nanda NC, Patel V, Miller AP, Mehmood F, Rajdev S, Fang L, Frans EE, Vengala S et al. Quantification of tricuspid regurgitation by live three-dimensional transthoracic echocardiographic measurements of vena contracta area. Echocardiography 2006 23 793–800. (https://doi.org/10.1111/j.1540-8175.2006.00314.x)

    Article  PubMed  Google Scholar 

  52. Vitel E, Galli E, Leclercq C, Fournet M, Bosseau C, Corbineau H, Bouzille G, Donal E Right ventricular exercise contractile reserve and outcomes after early surgery for primary mitral regurgitation. Heart 2018 104 855–860. (https://doi.org/10.1136/heartjnl-2017-312097)

    Article  PubMed  Google Scholar 

  53. Johnson C, Kuyt K, Oxborough D, Stout M Practical tips and tricks in measuring strain, strain rate and twist for the left and right ventricles. Echo Research and Practice 2019 6 R87–R98. (https://doi.org/10.1530/ERP-19-0020)

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kingsley C, Ahmad S, Pappachan J, Khambekar S, Smith T, Gardiner D, Shambrook J, Baskar S, Moore R, Veldtman G Right ventricular contractile reserve in tetralogy of Fallot patients with pulmonary regurgitation. Congenital Heart Disease 2018 13 288–294. (https://doi.org/10.1111/chd.12569)

    Article  PubMed  Google Scholar 

  55. Bhatt SM, Wang Y, Elci OU, Goldmuntz E, McBride M, Paridon S, Mercer-Rosa L Right ventricular contractile reserve is impaired in children and adolescents with repaired tetralogy of Fallot: an exercise strain imaging study. Journal of the American Society of Echocardiography 2019 32 135–144. (https://doi.org/10.1016/j.echo.2018.08.008)

    Article  PubMed  Google Scholar 

  56. Ait-Ali L, Siciliano V, Passino C, Molinaro S, Pasanisi E, Sicari R, Pingitore A, Festa P Role of stress echocardiography in operated Fallot: feasibility and detection of right ventricular response. Journal of the American Society of Echocardiography 2014 27 1319–1328. (https://doi.org/10.1016/j.echo.2014.08.006)

    Article  PubMed  Google Scholar 

  57. Prihadi EA, Delgado V, Hahn RT, Leipsic J, Min JK, Bax JJ Imaging needs in novel transcatheter tricuspid valve interventions. JACC: Cardiovascular Imaging 2018 11 736–754. (https://doi.org/10.1016/j.jcmg.2017.10.029)

    PubMed  Google Scholar 

  58. Myerson S, Francis J, Neubauer S (Eds). Cardiovascular Magnetic Resonance (Oxford Specialist Handbooks in Cardiology). Oxford University Press, 2010.

    Google Scholar 

  59. Mercer-Rosa L, Yang W, Kutty S, Ruchik J, Fogel M, Goldmuntz E Quantifying pulmonary regurgitation and right ventricular function in surgically repaired tetralogy of Fallot: a comparative analysis of echocardiography and magnetic resonance imaging. Circulation: Cardiovascular Imaging 2012 5 637–643. (https://doi.org/10.1161/CIRCIMAGING.112.972588)

    Google Scholar 

  60. Oosterhof T, Van Straten A, Vliegen HW, Meijboom FJ, Van Dijk APJ, Spijkerboer AM, Bouma BJ, Zwinderman AH, Hazekamp MG, De Roos A Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation 2007 116 545–551. (https://doi.org/10.1161/CIRCULATIONAHA.106.659664)

    Article  PubMed  Google Scholar 

  61. Khalique OK, Cavalcante JL, Shah D, Guta AC, Zhan Y, Piazza N, Muraru D Multimodality imaging of the tricuspid valve and right heart anatomy. JACC: Cardiovascular Imaging 2019 12 516–531. (https://doi.org/10.1016/j.jcmg.2019.01.006)

    PubMed  Google Scholar 

  62. Fukuda S, Gillinov AM, McCarthy PM, Stewart WJ, Song JM, Kihara T, Daimon M, Shin MS, Thomas JD, Shiota T Determinants of recurrent or residual functional tricuspid regurgitation after tricuspid annuloplasty. Circulation 2006 114 (Supplement) I582–I587. (https://doi.org/10.1161/CIRCULATIONAHA.105.001305)

    Article  PubMed  Google Scholar 

  63. Min SY, Song JM, Kim JH, Jang MK, Kim YJ, Song H, Kim DH, Lee JW, Kang DH, Song JK Geometric changes after tricuspid annuloplasty and predictors of residual tricuspid regurgitation: a real-time three-dimensional echocardiography study. European Heart Journal 2010 31 2871–2880. (https://doi.org/10.1093/eurheartj/ehq227)

    Article  PubMed  Google Scholar 

  64. Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). European Heart Journal 2009 30 2493–2537. (https://doi.org/10.1093/eurheartj/ehp297)

    Article  PubMed  Google Scholar 

  65. Renella P, Aboulhosn J, Lohan DG, Jonnala P, Finn JP, Satou GM, Williams RJ, Child JS Two-dimensional and Doppler echocardiography reliably predict severe pulmonary regurgitation as quantified by cardiac magnetic resonance. Journal of the American Society of Echocardiography 2010 23 880–886. (https://doi.org/10.1016/j.echo.2010.05.019)

    Article  PubMed  Google Scholar 

  66. Puchalski MD, Askovich B, Sower CT, Williams RV, Minich LLA, Tani LY Pulmonary regurgitation: determining severity by echocardiography and magnetic resonance imaging. Congenital Heart Disease 2008 3 168–175. (https://doi.org/10.1111/j.1747-0803.2008.00184.x)

    Article  PubMed  Google Scholar 

  67. Pothineni KR, Wells BJ, Hsiung MC, Nanda NC, Yelamanchili P, Suwanjutah T, Prasad ANR, Hansalia S, Lin CC, Yin WH et al. Live/real time three-dimensional transthoracic echocardiographic assessment of pulmonary regurgitation. Echocardiography 2008 25 911–917. (https://doi.org/10.1111/j.1540-8175.2008.00721.x)

    Article  PubMed  Google Scholar 

  68. Van Berendoncks A, Van Grootel R, McGhie J, van Kranenburg M, Menting M, Cuypers JAAE, Bogers AJJC, Witsenburg M, Roos-Hesselink JW, van den Bosch AE Echocardiographic parameters of severe pulmonary regurgitation after surgical repair of tetralogy of Fallot. Congenital Heart Disease 2019 14 628–637. (https://doi.org/10.1111/chd.12762)

    Article  PubMed  PubMed Central  Google Scholar 

  69. Augustine DX, Coates-Bradshaw LD, Willis J, Harkness A, Ring L, Grapsa J, Coghlan G, Kaye N, Oxborough D, Robinson S et al. Echocardiographic assessment of pulmonary hypertension: a guideline protocol from the British Society of Echocardiography. Echo Research and Practice 2018 5 G11–G24. (https://doi.org/10.1530/ERP-17-0071)

    Article  PubMed  PubMed Central  Google Scholar 

  70. Silversides CK, Veldtman GR, Crossin J, Merchant N, Webb GD, McCrindle BW, Siu SC, Therrien J Pressure half-time predicts hemodynamically significant pulmonary regurgitation in adult patients with repaired tetralogy of Fallot. Journal of the American Society of Echocardiography 2003 16 1057–1062. (https://doi.org/10.1016/S0894-7317(0300553-4)

    Article  PubMed  Google Scholar 

  71. Lang RM, Badano LP, Victor MA, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography 2015 28 1.e14–39.e14. (https://doi.org/10.1016/j.echo.2014.10.003)

    Article  Google Scholar 

  72. Fawzy ME, Mercer EN, Dunn B, Al-Amri M, Andaya W Doppler echocardiography in the evaluation of tricuspid stenosis. European Heart Journal 1989 10 985–990. (https://doi.org/10.1093/oxfordjournals.eurheartj.a059423)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Abbas Zaidi MD.

Additional information

Supplementary materials

-- https://doi.org/10.1530/ERP-20-0033.

Rights and permissions

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.(http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaidi, A., Oxborough, D., Augustine, D.X. et al. Echocardiographic assessment of the tricuspid and pulmonary valves: a practical guideline from the British Society of Echocardiography. Echo Res Pract 7, G95–G122 (2020). https://doi.org/10.1530/ERP-20-0033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-20-0033

Key Words