Skip to main content

Predicting and measuring fluid responsiveness with echocardiography

Abstract

Echocardiography is ideally suited to guide fluid resuscitation in critically ill patients. It can be used to assess fluid responsiveness by looking at the left ventricle, aortic outflow, inferior vena cava and right ventricle. Static measurements and dynamic variables based on heart–lung interactions all combine to predict and measure fluid responsiveness and assess response to intravenous fluid resuscitation. Thorough knowledge of these variables, the physiology behind them and the pitfalls in their use allows the echocardiographer to confidently assess these patients and in combination with clinical judgement manage them appropriately.

References

  1. Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD & Harabin AL 2006 Comparison of two fluid-management strategies in acute lung injury. New England Journal of Medicine 354 2564–2575. (doi:10.1056/NEJMoa062200)

    Article  CAS  Google Scholar 

  2. Boyd JH, Forbes J, Nakada T, Walley KR & Russell JA 2011 Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Critical Care Medicine 39 259–265. (doi:10.1097/CCM.0b013e3181feeb15)

    Article  Google Scholar 

  3. Michard F 2002 Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121 2000–2008. (doi:10.1378/chest.121.6.2000)

    Article  Google Scholar 

  4. Marik PE, Cavallazzi R, Vasu T & Hirani A 2009 Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Critical Care Medicine 37 2642–2647. (doi:10.1097/CCM.0b013e3181a590da)

    Article  Google Scholar 

  5. Magder S & De Varennes B 1998 Clinical death and the measurement of stressed vascular volume. Critical Care Medicine 26 1061–1064. (doi:10.1097/00003246-199806000-00028)

    Article  CAS  Google Scholar 

  6. Gelman S 2008 Venous function and central venous pressure: a physiologic story. Anesthesiology 108 735–748. (doi:10.1097/ALN.0b013e3181672607)

    Article  Google Scholar 

  7. Marik PE, Baram M & Vahid B 2008 Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134 172–178. (doi:10.1378/chest.07-2331)

    Article  Google Scholar 

  8. Perel A, Pizov R & Cotev S 1987 Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology 67 498–502. (doi:10.1097/00000542-198710000-00009)

    Article  CAS  Google Scholar 

  9. Chew MS 2012 Haemodynamic monitoring using echocardiography in the critically ill: a review. Cardiology Research and Practice 2012 139537. (doi:10.1155/2012/139537)

    Google Scholar 

  10. Tavernier B, Makhotine O, Lebuffe G, Dupont J & Scherpereel P 1998 Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology 89 1313–1321. (doi:10.1097/00000542-199812000-00007)

    Article  CAS  Google Scholar 

  11. Mandeville JC & Colebourn CL 2013 Predicting fluid responsiveness in the critically ill adult. British Journal of Intensive Care 23 20–26. (doi:10.1155/2012/513480)

    Google Scholar 

  12. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP & Teboul JL 2001 Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119 867–873. (doi:10.1378/chest.119.3.867)

    Article  CAS  Google Scholar 

  13. Tousignant CP, Walsh F & Mazer CD 2000 The use of transesophageal echocardiography for preload assessment in critically ill patients. Anesthesia & Analgesia 90 351–355. (doi:10.1213/00000539-200002000-00021)

    CAS  Google Scholar 

  14. Cannesson M, Slieker J, Desebbe O, Farhat F, Bastien O & Lehot J-J 2006 Prediction of fluid responsiveness using respiratory variations in left ventricular stroke area by transoesophageal echocardiographic automated border detection in mechanically ventilated patients. Critical Care 10 R171. (doi:10.1186/cc5123)

    Google Scholar 

  15. Chauvet J-L, El-Dash S, Delastre O, Bouffandeau B, Jusserand D, Michot J-B, Bauer F, Maizel J & Slama M 2015 Early dynamic left intraventricular obstruction is associated with hypovolemia and high mortality in septic shock patients. Critical Care 19 262. (doi:10.1186/s13054-015-0980-z)

  16. Muller L, Louart G, Bousquet P-J, Candela D, Zoric L, Coussaye J-E, Jaber S & Lefrant J-Y 2009 The influence of the airway driving pressure on pulsed pressure variation as a predictor of fluid responsiveness. Intensive Care Medicine 36 496–503. (doi:10.1007/s00134-009-1686-y)

    Article  Google Scholar 

  17. Tavernier B & Robin E 2011 Assessment of fluid responsiveness during increased intra-abdominal pressure: keep the indices, but change the thresholds. Critical Care 15 134. (doi:10.1186/cc10074)

    Article  Google Scholar 

  18. de Waal EEC, Rex S, Kruitwagen CLJJ, Kalkman CJ & Buhre WF 2009 Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions. Critical Care Medicine 7 510–515. (doi:10.1097/CCM.0b013e3181958bf7)

    Article  Google Scholar 

  19. Mahjoub Y, Lejeune V, Muller L, Perbet S, Zieleskiewicz L, Bart F, Veber B, Paugam-Burtz C, Jaber S, Ayham A, et al. 2014 Evaluation of pulse pressure variation validity criteria in critically ill patients: a prospective observational multicentre point-prevalence study. British Journal of Anaesthesia 112 681–685. (doi:10.1093/bja/aet442)

    Article  CAS  Google Scholar 

  20. Jardin F & Vieillard-Baron A 2006 Ultrasonographic examination of the venae cavae. Intensive Care Medicine 32 203–206. (doi:10.1007/s00134-005-0013-5)

    Article  Google Scholar 

  21. Jue J, Chung W & Schiller NB 1992 Does inferior vena cava size predict right atrial pressures in patients receiving mechanical ventilation? Journal of the American Society of Echocardiography 5 613–619. (doi:10.1016/S0894-7317(14)80327-1)

    Article  CAS  Google Scholar 

  22. Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, Kirkpatrick JN & Spencer KT 2007 Reappraisal of the use of inferior vena cava for estimating right atrial pressure. Journal of the American Society of Echocardiography 20 857–861. (doi:10.1016/j.echo.2007.01.005)

    Article  Google Scholar 

  23. Feissel M, Michard F, Faller J-P & Teboul J-L 2004 The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Medicine 30 1834–1837.

    Article  Google Scholar 

  24. Barbier C, Loubières Y, Schmit C, Hayon J, Ricôme J-L, Jardin F & Vieillard-Baron A 2004 Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Medicine 30 1740–1746.

    Article  Google Scholar 

  25. Airapetian N, Maizel J, Alyamani O, Mahjoub Y, Lorne E, Levrard M, Ammenouche N, Seydi A, Tinturier F, Lobjoie E, et al. 2015 Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients? Critical Care 19 400. (doi:10.1186/s13054-015-1100-9)

  26. Vieillard-Baron A, Chergui K, Rabiller A, Peyrouset O, Page B, Beauchet A & Jardin F 2004 Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Medicine 30 1734–1739.

    Article  Google Scholar 

  27. Mercat A, Diehl JL, Meyer G, Teboul JL & Sors H 1999 Hemodynamic effects of fluid loading in acute massive pulmonary embolism. Critical Care Medicine 27 540–544. (doi:10.1097/00003246-199903000-00032)

    Article  CAS  Google Scholar 

  28. Cavallaro F, Sandroni C, Marano C, La Torre G, Mannocci A, De Waure C, Bello G, Maviglia R & Antonelli M 2010 Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Medicine 36 1475–1483. (doi:10.1007/s00134-010-1929-y)

    Article  Google Scholar 

  29. Vincent J-L & Weil MH 2006 Fluid challenge revisited. Critical Care Medicine 34 1333–1337. (doi:10.1097/01.CCM.0000214677.76535.A5)

    Article  Google Scholar 

  30. Muller L, Toumi M, Bousquet P-J, Riu-Poulenc B, Louart G, Candela D, Zoric L, Suehs C, de La Coussaye JE, Molinari N, et al. 2011 An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology 115 541–547. (doi:10.1097/ALN.0b013e318229a500)

    Article  CAS  Google Scholar 

  31. Hilton AK & Bellomo R 2012 A critique of fluid bolus resuscitation in severe sepsis. Critical Care 16 302. (doi:10.1186/cc11154)

    Article  Google Scholar 

Download references

Funding

This work did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miller Ashley MBChB FRCA FFICM.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashley, M., Justin, M. Predicting and measuring fluid responsiveness with echocardiography. Echo Res Pract 3, G1–G12 (2016). https://doi.org/10.1530/ERP-16-0008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1530/ERP-16-0008

Key Words

  • echocardiography
  • guidelines
  • haemodynamics
  • ventricular function
  • ultrasound protocols