- Guidelines and Recommendations
- Open access
- Published:
Echocardiographic assessment of pulmonary hypertension: a guideline protocol from the British Society of Echocardiography
Echo Research & Practice volume 5, pages G11–G24 (2018)
Abstract
Pulmonary hypertension is defined as a mean arterial pressure of ≥25 mmHg as confirmed on right heart catheterisation. Traditionally, the pulmonary arterial systolic pressure has been estimated on echo by utilising the simplified Bernoulli equation from the peak tricuspid regurgitant velocity and adding this to an estimate of right atrial pressure. Previous studies have demonstrated a correlation between this estimate of pulmonary arterial systolic pressure and that obtained from invasive measurement across a cohort of patients. However, for an individual patient significant overestimation and underestimation can occur and the levels of agreement between the two is poor. Recent guidance has suggested that echocardiographic assessment of pulmonary hypertension should be limited to determining the probability of pulmonary hypertension being present rather than estimating the pulmonary artery pressure. In those patients in whom the presence of pulmonary hypertension requires confirmation, this should be done with right heart catheterisation when indicated. This guideline protocol from the British Society of Echocardiography aims to outline a practical approach to assessing the probability of pulmonary hypertension using echocardiography and should be used in conjunction with the previously published minimum dataset for a standard transthoracic echocardiogram.
Change history
01 September 2019
An Erratum to this paper has been published: https://doi.org/10.1530/ERP-17-0071e
References
Wharton G, Steeds R, Allen J, Phillips H, Jones R, Kanagala P, Lloyd G, Masani N, Mathew T, Oxborough D, et al. A minimum dataset for a standard adult transthoracic echocardiogram: a guideline protocol from the British Society of Echocardiography. Echo Research and Practice 20152 G9–G24. (https://doi.org/10.1530/ERP-14-0079)
Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noordegraaf A, Beghetti M, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). European Heart Journal 201637 67–119. (https://doi.org/10.1093/eurheartj/ehv317)
Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, Lung B, Lancellotti P, Lansac E, Munoz DR, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. European Heart Journal 201738 2739–2791. (https://doi.org/10.1093/eurheartj/ehx391)
Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Fleisher LA, Jneid H, Mack MJ, McLeod CJ, O'Gara PT, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC Guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 201770 252–289. (https://doi.org/10.1016/j.jacc.2017.03.011)
Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, et al. 2014 AHA/ACC Guideline for the management of patients with valvular heart disease. Circulation 2014129 e650. (https://doi.org/10.1161/CIR.0000000000000029)
Gillam LD, Marcoff L. Hemodynamics in primary mitral regurgitation. Circulation: Cardiovascular Imaging 201811 e007471. (https://doi.org/10.1161/CIRCIMAGING.118.007471)
Hoeper MM, Kramer T, Pan Z, Eichstaedt CA, Spiesshoefer J, Benjamin N, Olsson KM, Meyer K, Vizza CD, Vonk-Noordegraaf A, et al. Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. European Respiratory Journal 201750 1700740. (https://doi.org/10.1183/13993003.00740-2017)
Oudiz RJ. Death in pulmonary arterial hypertension. American Journal of Respiratory and Critical Care Medicine 2013188 269–270. (https://doi.org/10.1164/rccm.201305-0898ED)
Weitsman T, Weisz G, Farkash R, Klutstein M, Butnaru A, Rosenmann D, Hasin T. Pulmonary hypertension with left heart disease: prevalence, temporal shifts in etiologies and outcome. American Journal of Medicine 2018130 1272–1279. (https://doi.org/10.1016/j.amjmed.2017.05.003)
Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, et al. Updated clinical classification of pulmonary hypertension. Journal of the American College of Cardiology 201362 D34. (https://doi.org/10.1016/j.jacc.2013.10.029)
D’Alto M, Romeo E, Argiento P, D’Andrea A, Vanderpool R, Correra A, Bossone E, Sarubbi B, Calabrò R, Russo MG, et al. Accuracy and precision of echocardiography versus right heart catheterization for the assessment of pulmonary hypertension. International Journal of Cardiology 2017168 4058–4062. (https://doi.org/10.1016/j.ijcard.2013.07.005)
Rich JD, Shah SJ, Swamy RS, Kamp A, Rich S. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension. Chest 2017139 988–993. (https://doi.org/10.1378/chest.10-1269)
Fisher MR, Forfia PR, Chamera E, Housten-Harris T, Champion HC, Girgis RE, Corretti MC, Hassoun PM. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine 2009179 615–621. (https://doi.org/10.1164/rccm.200811-1691OC)
Greiner S, Jud A, Aurich M, Hess A, Hilbel T, Hardt S, Katus HA, Mereles D. Reliability of noninvasive assessment of systolic pulmonary artery pressure by Doppler echocardiography compared to right heart catheterization: analysis in a large patient population. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease 20143 e001103. (https://doi.org/10.1161/JAHA.114.001103)
Roberts JD, Forfia PR. Diagnosis and assessment of pulmonary vascular disease by Doppler echocardiography. Pulmonary Circulation 20111 160–181. (https://doi.org/10.4103/2045-8932.83446)
Magnino C, Omedè P, Avenatti E, Presutti D, Iannaccone A, Chiarlo M, Moretti C, Gaita F, Veglio F, Milan A, et al. Inaccuracy of right atrial pressure estimates through inferior vena cava indices. American Journal of Cardiology 2018120 1667–1673. (https://doi.org/10.1016/j.amjcard.2017.07.069)
Fei B, Fan T, Zhao L, Pei X, Shu X, Fang X, Cheng L. Impact of severe tricuspid regurgitation on accuracy of systolic pulmonary arterial pressure measured by Doppler echocardiography: analysis in an unselected patient population. Echocardiography 201734 1082–1088. (https://doi.org/10.1111/echo.13555)
Mukerjee D, St. George D, Knight C, Davar J, Wells AU, Du Bois RM, Black CM, Coghlan JG. Echocardiography and pulmonary function as screening tests for pulmonary arterial hypertension in systemic sclerosis. Rheumatology 200443 461–466. (https://doi.org/10.1093/rheumatology/keh067)
Caballero L, Kou S, Dulgheru R, Gonjilashvili N, Athanassopoulos GD, Barone D, Cardim N, Gomez de Diego JJ, Oliva MJ, Hagendorff A, et al. Echocardiographic reference ranges for normal cardiac Doppler data: results from the NORRE Study. European Heart Journal: Cardiovascular Imaging 201516 1031–1041. (https://doi.org/10.1093/ehjci/jev083)
Schneider M, Pistritto AM, Gerges C, Gerges M, Binder C, Lang I, Maurer G, Binder T, Goliasch G. Multi-view approach for the diagnosis of pulmonary hypertension using transthoracic echocardiography. International Journal of Cardiovascular Imaging 201734 695–700. (https://doi.org/10.1007/s10554-017-1279-8)
Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography. Journal of the American Society of Echocardiography 201723 685–713. (https://doi.org/10.1016/j.echo.2010.05.010)
McQuillan BM, Picard MH, Leavitt M, Weyman AE. Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation 2001104 2797. (https://doi.org/10.1161/hc4801.100076)
Kitabatake A, Inoue M, Asao M, Masuyama T, Tanouchi J, Morita T, Mishima M, Uematsu M, Shimazu T, Hori M, et al. Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation 198368 302. (https://doi.org/10.1161/01.CIR.68.2.302)
Howard LS, Grapsa J, Dawson D, Bellamy M, Chambers JB, Masani ND, Nihoyannopoulos P, Simon R, Gibbs J. Echocardiographic assessment of pulmonary hypertension: standard operating procedure. European Respiratory Review 201221 239–248. (https://doi.org/10.1183/09059180.00003912)
Mallery JA, Gardin JM, King SW, Ey S, Henry WL. Effects of heart rate and pulmonary artery pressure on Doppler pulmonary artery acceleration time in experimental acute pulmonary hypertension. Chest 2018100 470–473. (https://doi.org/10.1378/chest.100.2.470)
Parasuraman S, Walker S, Loudon BL, Gollop ND, Wilson AM, Lowery C, Frenneaux MP. Assessment of pulmonary artery pressure by echocardiography: a comprehensive review. International Journal of Cardiology: Heart and Vasculature 201612 45–51. (https://doi.org/10.1016/j.ijcha.2016.05.011)
Marra AM, Benjamin N, Ferrara F, Vriz O, D’Alto M, D’Andrea A, Stanziola AA, Gargani L, Cittadini A, Grünig E, et al. Reference ranges and determinants of right ventricle outflow tract acceleration time in healthy adults by two-dimensional echocardiography. International Journal of Cardiovascular Imaging 201733 219–226. (https://doi.org/10.1007/s10554-016-0991-0)
Arkles JS, Opotowsky AR, Ojeda J, Rogers F, Liu T, Prassana V, Marzec L, Palevsky HI, Ferrari VA, Forfia PR. Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. American Journal of Respiratory and Critical Care Medicine 2011183 268–276. (https://doi.org/10.1164/rccm.201004-0601OC)
Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF. An echocardiographic index for separation of right ventricular volume and pressure overload. Journal of the American College of Cardiology 19855 918–927. (https://doi.org/10.1016/S0735-1097(85)80433-2)
Austin C, Alassas K, Burger C, Safford R, Pagan R, Duello K, Kumar P, Zeiger T, Shapiro B. Echocardiographic assessment of estimated right atrial pressure and size predicts mortality in pulmonary arterial hypertension. Chest 2014147 198–208. (https://doi.org/10.1378/chest.13-3035)
Bossone E, D’Andrea A, D’Alto M, Citro R, Argiento P, Ferrara F, Cittadini A, Rubenfire M, Naeije R. Echocardiography in pulmonary arterial hypertension: from diagnosis to prognosis. Journal of the American Society of Echocardiography 201326 1–14. (https://doi.org/10.1016/j.echo.2012.10.009)
Grapsa J, Pereira Nunes MC, Tan TC, Cabrita IZ, Coulter T, Smith BCF, Dawson D, Gibbs JSR, Nihoyannopoulos P. Echocardiographic and hemodynamic predictors of survival in precapillary pulmonary hypertension. Clinical perspective. Circulation: Cardiovascular Imaging 20158 e002107. (https://doi.org/10.1161/CIRCIMAGING.114.002107)
Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography 201528 1.e14–39.e14. (https://doi.org/10.1016/j.echo.2014.10.003)
Weatherald J, Boucly A, Chemla D, Savale L, Peng M, Jevnikar M, Jaïs X, Taniguchi Y, O’Connell C, Parent F, et al. Prognostic value of follow-up hemodynamic variables after initial management in pulmonary arterial hypertension. Circulation 2018137 693–704. (https://doi.org/10.1161/CIRCULATIONAHA.117.029254)
Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. Journal of the American College of Cardiology 200341 1021–1027. (https://doi.org/10.1016/S0735-1097(02)02973-X)
Berger M, Haimowitz A, Van Tosh A, Berdoff RL, Goldberg E. Quantitative assessment of pulmonary hypertension in patients with tricuspid regurgitation using continuous wave Doppler ultrasound. Journal of the American College of Cardiology 19856 359–365. (https://doi.org/10.1016/S0735-1097(85)80172-8)
Platts DG, Vaishnav M, Burstow DJ, Craig CH, Chan J, Sedgwick JF, Scalia GM. Contrast microsphere enhancement of the tricuspid regurgitant spectral Doppler signal: is it still necessary with contemporary scanners? International Journal of Cardiology: Heart and Vasculature 201717 1–10. (https://doi.org/10.1016/j.ijcha.2017.08.002)
Rosenkranz S, Gibbs JS, Wachter R, De Marco T, Vonk-Noordegraaf A, Vachiery JL. Left ventricular heart failure and pulmonary hypertension. European Heart Journal 201537 942–954. (https://doi.org/10.1093/eurheartj/ehv512)
D’Alto M, Romeo E, Argiento P, Pavelescu A, Melot C, D’Andrea A, Correra A, Bossone E, Calabro R, Russo MG. Echocardiographic prediction of pre- versus postcapillary pulmonary hypertension. Journal of the American Society of Echocardiography 201728 108–115. (https://doi.org/10.1016/j.echo.2014.09.004)
Opotowsky AR, Ojeda J, Rogers F, Prasanna V, Clair M, Moko L, Vaidya A, Afilalo J, Forfia PR. A simple echocardiographic prediction rule for hemodynamics in pulmonary hypertension clinical perspective. Circulation: Cardiovascular Imaging 20125 765.
Ghoreishi M, Evans CF, DeFilippi CR, Hobbs G, Young CA, Griffith BP, Gammie JS. Pulmonary hypertension adversely affects short- and long-term survival after mitral valve operation for mitral regurgitation: Implications for timing of surgery. Journal of Thoracic and Cardiovascular Surgery 2011142 1439–1452. (https://doi.org/10.1016/j.jtcvs.2011.08.030)
Mentias A, Patel K, Patel H, Gillinov AM, Sabik JF, Mihaljevic T, Suri RM, Rodriquez LL, Svensson LG, Griffin BP, et al. Effect of pulmonary vascular pressures on long-term outcome in patients with primary mitral regurgitation. Journal of the American College of Cardiology 201667 2952–2961. (https://doi.org/10.1016/j.jacc.2016.03.589)
Funding
The publication of this article was sponsored by Actelion Pharmaceuticals Ltd. The article was produced by the British Society of Echocardiography independently of Actelion Pharmaceuticals Ltd, and they were not able to influence its content. Peer review was carried out independently by the journal’s editorial board, based on scientific merit alone.
Author information
Authors and Affiliations
Corresponding author
Additional information
(D Augustine is the Lead Author)
(Guideline Chairs: T Mathew and V Sharma)
The publication of this article was sponsored by Actelion Pharmaceuticals Ltd. The article was produced by the British Society of Echocardiography independently of Actelion Pharmaceuticals Ltd and they were not able to influence its content. Peer review was carried out independently by the journal’s editorial board, based on scientific merit alone.
Rights and permissions
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.(http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
About this article
Cite this article
Augustine, D.X., Coates-Bradshaw, L.D., Willis, J. et al. Echocardiographic assessment of pulmonary hypertension: a guideline protocol from the British Society of Echocardiography. Echo Res Pract 5, G11–G24 (2018). https://doi.org/10.1530/ERP-17-0071
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1530/ERP-17-0071